
Nodes/grids/meshes on the sphere

Grady Wright

Contents

• Icosahedral Nodes
• Cubed sphere
• HEALPix
• Fibonacci nodes
• Minimum energry nodes
• Maximum determinant nodes
• Hammersley nodes

A key difficulty with developing numerical methods for problems in spherical
geometries is that it is impossible to uniformly distribute more than 20 points
on a sphere, in contrast to trivially placing any number of points uniformly
along the periphery of a circle. The essence of the problem is one that has
faced cartographers for at least a millennium - the surface of a sphere cannot
be mapped to a rectangle without distortions and a singularity in at least one
location. In standard spherical coordinates, there are two such singularites at
the north and south poles, which is referred to as the “Pole Problem”.

Because of this inability to produce a uniform distribution of points on sphere
larger than 20, much research has been devoted (and contiues today) to gen-
erating point sets that are quasi-uniformly distributed. These are based on
mapped rectangular grids, a subdivided polyhedron (usually an icosahedron),
or more general “meshless” techniques that do not use an underlying grid or
mesh. Several of these methods are available in the rbfsphere package.

In this tutorial we give examples of the functions available and illustrate the
corresponding node sets. We also highlight some of the utility functions in the
rbfsphere package for dealing with these node sets.

Note that all the functions for generating the node sets return an N -by-3 array,
where N is the toal number of nodes and the columns corresponds to the (x,y,z)
coordinates of the nodes.

LW = ’linewidth’; lw = 1.2; FS = ’FontSize’; fs = 12;

FC = ’FaceColor’; fc = ’y’; EC = ’EdgeColor’; ec = ’none’;

vw = [-12 6];

Icosahedral Nodes

Icosahedral (or geodesic) nodes are formed by recursively subdividing the 12
triangular faces of an icosahedron, and projecting the nodes to the surface

1



of the sphere after each subdivision. These node sets are available using the
getIcosNodes function. There are two types of these nodes that are typically
used in applications. Type=0 nodes are generated by recursive bisection of the
edges of the base icosahedron. Type=1 nodes are generated by first trisect-
ing the edges of the base icosahedron and then recursive bisection of the edges
of the resulting traingle. Both types are available in the getIcosNodes nodes
function. Here’s an example of the function calls:

x0 = getIcosNodes(4,0); % Type 0

x1 = getIcosNodes(2,1); % Type 1.

The first argument represents the number of subdivisions that should be per-
formed, while the second is the node type. In the case of Type 0 nodes k subdi-
visions results in N = 10·4k+2 nodes, while for Type 0 nodes N = 10·32 ·4k+2.
Here are these values for several k:

k = 0:8;

N0 = 10*4.^k+2;

N1 = 10*3^2*4.^k+2;

fprintf(’ Type 1 Type 2\n’);

fprintf(’%8d\t%8d\n’,[N0;N1])

Type 1 Type 2

12 92

42 362

162 1442

642 5762

2562 23042

10242 92162

40962 368642

163842 1474562

655362 5898242

An optional output argument for the getIcosNodes function is the triangulation
of the nodes:

[x0,tri0] = getIcosNodes(4,0); % Type 0

[x1,tri1] = getIcosNodes(2,1); % Type 1.

The plotSphNodes utility function can be used to produce a “visually pleasing”
plot of the node sets:

plotSphNodes(x0);

title(’Type 0 Icosahedral Nodes’,FS,fs); view(vw);

2



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Type 0 Icosahedral Nodes

0
10.50-0.5-1-1

plotSphNodes(x1);

title(’Type 1 Icosahedral Nodes’,FS,fs); view(vw);

3



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Type 1 Icosahedral Nodes

0
10.50-0.5-1-1

You can get a better idea for how the nodes are arranged by plotting the trian-
gulation of the nodes:

trisurf(tri0,x0(:,1),x0(:,2),x0(:,3),FC,fc);

title(’Triangulation of Type 0 Icosahedral Nodes’,FS,fs);

axis equal; view(vw)

4



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Triangulation of Type 0 Icosahedral Nodes

0
10.50-0.5-1-1

trisurf(tri1,x1(:,1),x1(:,2),x1(:,3),FC,fc);

title(’Triangulation of Type 1 Icosahedral Nodes’,FS,fs);

axis equal; view(vw);

5



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Triangulation of Type 1 Icosahedral Nodes

0
10.50-0.5-1-1

Alternatively, the structure can also be seen by plotting the Voronoi diagram
of the nodes (or the dual of the Delaunay triangulation). The function in the
rbfsphere package for this operation is voronoiSph:

voronoiSph(x0);

title(’Voronoi diagram of Type 0 Icosahedral Nodes’,FS,fs), view(vw)

6



voronoiSph(x1);

title(’Triangulation of Type 1 Icosahedral Nodes’,FS,fs), view(vw)

Cubed sphere

The cubed sphere is formed by first forming a tensor product grid on the 6
faces of a cube inscribed in the unit sphere. Then each face is projected to
the surface of the sphere. These nodes, which are the vertices of the grid,

7



can be obtained from the getCubedSphNodes function. This function uses an
equiangular projection of the 6 faces. The input to this function is p, the
number of nodes in one direction of the grid on each face. This results in a total
of N = 6P 2 − 12P + 8 nodes. Here is an example for p=20:

x = getCubedSphNodes(20);

plotSphNodes(x);

title(’Cubed Sphere Nodes’,FS,fs); view(vw);

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Cubed Sphere Nodes

0
10.50-0.5-1-1

To see the underlying structure of these nodes we can triangulate them and
plot the resulting triangles. The utility function delaunaySph in the rbfsphere
package provides a straightforward way to generate such a triangulation:

tri = delaunaySph(x);

trisurf(tri,x(:,1),x(:,2),x(:,3),FC,fc);

title(’Triangulation of the Cubed Sphere Nodes’,FS,fs);

axis equal; view(vw)

8



-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.5

Triangulation of the Cubed Sphere Nodes

0
-0.5 0.80.60.40.20-0.2-0.4-0.6-0.8

As above, the Voronoi diagram also reveals the structure:

voronoiSph(x);

title(’Voronoi diagram of the Cubed Sphere nodes’,FS,fs);

axis equal; view(vw)

9



HEALPix

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) nodes were de-
veloped originally by NASA for applications related to satellite missions to mea-
sure the cosmic microwave background (CMB), which collect data on a spherical
surface. They are a grided set of nodes that provide a quasi-uniform covering.
For more details see http://healpix.sourceforge.net. These nodes can be
obtained from the getHealPixNodes function. The number of nodes is pa-
rameterized by the input parameter p, with the total number of nodes being
N = 12P 2. Here is an example for p = 20:

x = getHEALPixNodes(13);

plotSphNodes(x);

title(’HEALPix Nodes’,FS,fs); view(vw);

10



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

HEALPix Nodes

0
10.50-0.5-1-1

As above, the underlying structure of these nodes can be seen from a plot of
their Voronoi diagram:

voronoiSph(x);

title(’Voronoi diagram of the HEALPix Nodes’,FS,fs);

axis equal; view(vw)

11



Fibonacci nodes

Unlike the three previous node sets the Fibonacci (or phyllotaxis spiral nodes)
are not based on a grid. These nodes are developed by a deterministic algorithm
that arranges the nodes in a way to mimic certain botanical features (such as the
arrangement of seeds on a flower head). These nodes can be obtained from the
getFibonacciNodes function. The input to this function is N the total number
of nodes, which must be an odd number. Here is an example for N = 2029
(viewed from as slightly different vantage than the previous examples):

x = getFibonacciNodes(2029);

plotSphNodes(x);

title(’Fibonacci Nodes’,FS,fs); view([-30 30]);

12



-1

1

-0.5

0

0.5

0.5

1
0

Fibonacci Nodes

1

0.5

0-0.5

-0.5

-1 -1

There is still structure to these node sets

voronoiSph(x);

title(’Voronoi diagram of the Fibonacci Nodes’,FS,fs);

axis equal; view([-30 30])

13



Minimum energry nodes

Imagine randomly placing point charges of the same polarity on the surface of
the sphere. The charges will try to maximally separate so that the potenial
energy of the system of charges is at minimum. This is the idea behind generat-
ing the minimum energy (ME) nodes, which would be the position of the point
charges. More specifically, the ME nodes are arranged so that the Reisz energy
of the node set X = {xi}Ni=1 with respect to the power q is at a local minimum.
The energy is defined as

E(X) =

N∑
i=1

N∑
j=i+1

‖xi − xj‖−q

Computing these nodes requires solving a non-linear optimization that can take
significant time. The code getMinEnergyNodes can be used to get certain num-
bers of these nodes that have been pre-computed offline and stored (use help on
this function for more details). The stored nodes are minimized with respect to
the power q = 2 in the energy functional, and only a local minimum is actually
acheived. Here is an example for N = 2025:

x = getMinEnergyNodes(2025);

plotSphNodes(x);

title(’Minimum Energy Nodes’,FS,fs); view(vw);

14



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Minimum Energy Nodes

0
10.50-0.5-1-1

Unlike the other node sets discussed above, there is no discernible pattern can
be observed for these nodes:

voronoiSph(x);

title(’Voronoi diagram of Minimum Energy Nodes’,FS,fs), view(vw)

15



Maximum determinant nodes

The maximum determinant (MD) nodes are also computed using an optimiza-
tion technique. The idea is to arrange the nodes so that the determinant of a
Grammian matrix related to spherical harmonics is maximized. They can be
viewed as a type of Fekete node set for the sphere for the spherical harmonic
basis. The code getMaxDetNodes can be used to get certain numbers of these
nodes that have been pre-computed offline and stored (use help on this function
for more details). The stored nodes were computed by Prof. Womersley and
downloaded from

http://web.maths.unsw.edu.au/~rsw/Sphere/Extremal/New/index.html

. Here is an example for N = 2025:

x = getMaxDetNodes(2025);

plotSphNodes(x);

title(’Maximum Determinant Nodes’,FS,fs); view(vw);

16



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Maximum Determinant Nodes

0
10.50-0.5-1-1

Comparing to the ME nodes, we see the MD nodes are less regular, but still
quasi-uniformly distributed. As with the ME nodes, there is not a preceptible
pattern with the MD nodes:

voronoiSph(x);

title(’Voronoi diagram of the Maximum Determinant Nodes’,FS,fs);

axis equal; view(vw);

17



Hammersley nodes

The last set of nodes available from the rbfsphere package are not quasi-
uniform, but instead provide a “low-discrepancy” sequence for the sphere. These
nodes are available from the getHammersleyNodes function. Here is an example
for N = 2025:

x = getHammersleyNodes(2025);

plotSphNodes(x);

title(’Hammersley Nodes’,FS,fs); view(vw);

18



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

Hammersley Nodes

0
10.50-0.5-1-1

19


