2014 Montestigliano Workshop

Radial Basis Functions for Scientific Computing

Grady B. Wright Boise State University

2014 Montestigliano Workshop

Part I: Introduction

Supplementary lecture slides

Grady B. Wright Boise State University

- ullet Scattered data interpolation in \mathbb{R}^d
 - Positive definite radial kernels: radial basis functions (RBF)
 - Some theory
- Scattered data interpolation on the sphere S²
 - Positive definite (PD) zonal kernels
 - Brief review of spherical harmonics
 - Characterization of PD zonal kernels
 - Conditionally positive definite zonal kernels
 - Examples
- Error estimates:
 - Reproducing kernel Hilbert spaces
 - Sobolev spaces
 - Native spaces
 - Geometric properties of node sets
- Optimal nodes on the sphere

- Let $\Omega \subset \mathbb{R}^d$ and $X = \{\mathbf{x}_j\}_{j=1}^N$ a set of nodes on Ω .
- Consider a continuous target function $f: \Omega \to \mathbb{R}$ sampled at $X: f|_{\mathcal{V}}$.

• Kernel interpolant to $f\Big|_{\mathbf{x}}$: $I_X f = \sum_{i=1}^{N} c_i \Phi(\cdot, \mathbf{x}_i)$

$$I_X f = \sum_{i=1}^{n} c_j \Phi(\cdot, \mathbf{x}_j)$$

where $\Phi: \Omega \times \Omega \to \mathbb{R}$ and c_j come from requiring $I_X f \Big|_{Y} = f \Big|_{Y}$

• <u>Definition</u>: Φ is a positive definite kernel on Ω if the matrix $A = \{\Phi(\mathbf{x}_i, \mathbf{x}_j)\}$ is positive definite for any distinct $X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega$, i.e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \Phi(\mathbf{x}_i, \mathbf{x}_j) b_j > 0, \text{ provided } \{b_i\}_{i=1}^{N} \neq 0.$$

• In this case c_j are uniquely determined by X and $f|_{X}$.

- Kernel interpolant to $f\Big|_{X}$: $I_X f = \sum_j c_j \Phi(\cdot, \mathbf{x}_j)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \to \mathbb{R}$
 - 1. The kernel should be easy to compute.
 - 2. The kernel interpolant should be uniquely determined by X and $f|_X$.
 - 3. The kernel interpolant should accurately reconstruct f.

- Kernel interpolant to $f\Big|_{X}$: $I_X f = \sum_j c_j \Phi(\cdot, \mathbf{x}_j)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \to \mathbb{R}$
 - 1. The kernel should be easy to compute.
 - 2. The kernel interpolant should be uniquely determined by X and $f|_X$.
 - 3. The kernel interpolant should accurately reconstruct f.
- For problems like

Obvious choice: ϕ is a (conditionally) positive definite radial kernel

$$\Phi(\mathbf{x}, \mathbf{x}_j) = \phi(\|\mathbf{x} - \mathbf{x}_j\|_2) = \phi(r)$$

• Leads to radial basis function (RBF) interpolation.

<u>Key idea</u>: linear combination of translates and rotations of a single radial kernel:

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

where
$$\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

$$f$$
 $X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f\Big|_X = \{\mathbf{f}_j\}_{j=1}^N$

<u>Key idea</u>: linear combination of translates and rotations of a single radial kernel:

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

where
$$\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

$$f$$
 $X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f\Big|_X = \{f_j\}_{j=1}^N$

<u>Key idea</u>: linear combination of translates and rotations of a single radial kernel:

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

where
$$\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

$$f$$
 $X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f\Big|_X = \{\mathbf{f}_j\}_{j=1}^N$

<u>Key idea</u>: linear combination of translates and rotations of a single radial kernel:

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

where
$$\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

$$f$$
 $X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f\Big|_X = \{\mathbf{f}_j\}_{j=1}^N$

<u>Key idea</u>: linear combination of translates and rotations of a single radial kernel:

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

where
$$\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

$$f$$
 $X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f\Big|_X = \{\mathbf{f}_j\}_{j=1}^N$

<u>Key idea</u>: linear combination of translates and rotations of a single radial kernel:

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

where
$$\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$$

$$f$$
 $X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f\Big|_X = \{\mathbf{f}_j\}_{j=1}^N$

<u>Key idea</u>: linear combination of translates and rotations of a single radial kernel:

Basic RBF Interpolant for $\Omega \subseteq \mathbb{R}^2$

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

Linear system for determining the interpolation coefficients

$$\begin{bmatrix}
\phi(\|\mathbf{x}_1 - \mathbf{x}_1\|) & \phi(\|\mathbf{x}_1 - \mathbf{x}_2\|) \cdots \phi(\|\mathbf{x}_1 - \mathbf{x}_N\|) \\
\phi(\|\mathbf{x}_2 - \mathbf{x}_1\|) & \phi(\|\mathbf{x}_2 - \mathbf{x}_2\|) \cdots \phi(\|\mathbf{x}_2 - \mathbf{x}_N\|) \\
\vdots & \vdots & \ddots & \vdots \\
\phi(\|\mathbf{x}_N - \mathbf{x}_1\|) & \phi(\|\mathbf{x}_N - \mathbf{x}_2\|) \cdots \phi(\|\mathbf{x}_N - \mathbf{x}_N\|)
\end{bmatrix}
\begin{bmatrix}
c_1 \\ c_2 \\ \vdots \\ c_N
\end{bmatrix} = \begin{bmatrix}
f_1 \\ f_2 \\ \vdots \\ f_N
\end{bmatrix}$$

 A_X is guaranteed to be positive definite if ϕ is positive definite.

Some results on positive definite radial kernels.

Theorem. If $\phi \in C[0, \infty)$ with $\phi(0) > 0$ and $\phi(\rho) < 0$ for some $\rho > 0$, then ϕ cannot be positive definite in \mathbb{R}^d for all d.

Some results on positive definite radial kernels.

Theorem. If $\phi \in C[0, \infty)$ with $\phi(0) > 0$ and $\phi(\rho) < 0$ for some $\rho > 0$, then ϕ cannot be positive definite in \mathbb{R}^d for all d.

Proof

Consider X to be the vertices of an m dimensional simplex with spacing ρ , i.e. $X = \{\mathbf{x}\}_{i=1}^{m+1} \subset \mathbb{R}^m$

Then

$$\sum_{i=1}^{m+1} \sum_{j=1}^{m+1} \phi(\|\mathbf{x}_i - \mathbf{x}_j\|) = \sum_{i=1}^{m+1} \phi(0) + \sum_{i=1}^{m+1} \sum_{j=1, j \neq i}^{m+1} \phi(\rho)$$
$$= (m+1)[\phi(0) + m\phi(\rho)].$$

Given $\phi(0) > 0$, we can find a ρ for which $\phi(\rho) < 0$ and an m to make this sum zero.

Some results on positive definite radial kernels.

Definition. A function $\Phi:[0,\infty)\to\mathbb{R}$ is said to be completely monotone on $[0,\infty)$ if

(1)
$$\Phi \in C[0,\infty)$$
, (2) $\Phi \in C^{\infty}(0,\infty)$, (3) $(-1)^k \Phi^{(k)}(t) \ge 0$, $t > 0$, $k = 0, 1, \dots$

Some results on positive definite radial kernels.

Definition. A function $\Phi:[0,\infty)\to\mathbb{R}$ is said to be completely monotone on $[0,\infty)$ if

(1)
$$\Phi \in C[0,\infty)$$
, (2) $\Phi \in C^{\infty}(0,\infty)$, (3) $(-1)^k \Phi^{(k)}(t) \ge 0$, $t > 0$, $k = 0, 1, \dots$

Theorem (Hausdorff-Bernstien-Widder). A function Φ is completely monotone if and only if it can be written in the form

$$\Phi(t) = \int_0^\infty e^{-st} d\gamma(s),$$

where $\gamma(s)$ is bounded, non-decreasing, and not concentrated at zero.

Some results on positive definite radial kernels.

Definition. A function $\Phi:[0,\infty)\to\mathbb{R}$ is said to be completely monotone on $[0,\infty)$ if

(1)
$$\Phi \in C[0,\infty)$$
, (2) $\Phi \in C^{\infty}(0,\infty)$, (3) $(-1)^k \Phi^{(k)}(t) \ge 0$, $t > 0$, $k = 0, 1, \dots$

Theorem (Hausdorff-Bernstien-Widder). A function Φ is completely monotone if and only if it can be written in the form

$$\Phi(t) = \int_0^\infty e^{-st} d\gamma(s),$$

where $\gamma(s)$ is bounded, non-decreasing, and not concentrated at zero.

Theorem (Schoenberg 1938). Let $\phi : [0, \infty) \to \mathbb{R}$ be a radial kernel and $\Phi(r) = \phi(\sqrt{r})$. Then ϕ is positive definite on \mathbb{R}^d , for all d, if and only if Φ is completely monotone on $[0, \infty)$ and not constant.

Proof: Use Bernstein-Hausdorff-Widder result and the fact the Gaussian is positive definite.

Some results on positive definite radial kernels.

Theorem (Schoenberg 1938). Let $\phi : [0, \infty) \to \mathbb{R}$ be a radial kernel and $\Phi(r) = \phi(\sqrt{r})$. Then ϕ is positive definite on \mathbb{R}^d , for all d, if and only if Φ is completely monotone on $[0, \infty)$ and not constant.

Examples:

Here ε is called the shape parameter (more on this later).

Results on dimensions specific positive definite radial kernels:

Theorem (General kernel). Let ϕ be a continuous kernel in $L_1(\mathbb{R}^d)$. Then ϕ is positive definite if and only if ϕ is bounded and its d-dimensional Fourier transform $\hat{\phi}(\omega)$ is non-negative and not identically equal to zero.

Remark: Related to Bochner's theorem (1933). Theorem and proof can be found in Wendland (2005).

• To make the result specific to radial kernels, we apply the d-dimensional Fourier transform and use radial symmetry to get (Hankel transform):

$$\hat{\phi}(\boldsymbol{\omega}) = \hat{\phi}(\|\boldsymbol{\omega}\|_2) = \frac{1}{\|\boldsymbol{\omega}\|_2^{\nu}} \int_0^{\infty} \phi(t) t^{d/2+1} J_{\nu}(\|\boldsymbol{\omega}\|_2 t) dt,$$

where $\nu = d/2 - 1$ and J_{ν} is the *J*-Bessel function of order ν .

• Note that if ϕ is positive definite on \mathbb{R}^d then it is positive definite on \mathbb{R}^k for any $k \leq d$.

0.5

Positive definite radial kernels

Examples

PD for $2\nu > d$

Ex:
$$e^{-r}(r^2 + 3r + 3)$$

Truncated powers

$$(1-\varepsilon r)_+^\ell$$

PD for
$$\ell \ge \lfloor d/2 \rfloor + 1$$

Wendland (1995)

$$(1 - \varepsilon r)_+^k p_{d,k}(\varepsilon r)$$

 $p_{d,k}$ is a polynomial
whose degree depends
on d and k .

Ex: $(1 - \varepsilon r)^4_+ (4\varepsilon r + 1)$

Infinite-smoothness

Discussion thus far does not cover many important radial kernels:

Popular kernel and first used in any RBF application; Hardy 1971

- These can covered under the theory of conditionally positive definite kernels.
- CPD kernels can be characterized similar to PD kernels but, using generalized Fourier transforms. We will not take this approach; see Ch. 8 Wendland 2005 for details.

Definition. A continuous kernel $\phi : [0, \infty) \to \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{R}^d if, for any distinct $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$, and all $\mathbf{b} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$ satisfying

$$\sum_{j=1}^{N} b_j p(\mathbf{x}_j) = 0$$

for all d-variate polynomials of degree < k, the following is satisfied:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \phi(\|\mathbf{x}_i - \mathbf{x}_j\|) b_j > 0.$$

Definition. A continuous kernel $\phi : [0, \infty) \to \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{R}^d if, for any distinct $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$, and all $\mathbf{b} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$ satisfying

$$\sum_{j=1}^{N} b_j p(\mathbf{x}_j) = 0$$

for all d-variate polynomials of degree < k, the following is satisfied:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \phi(\|\mathbf{x}_i - \mathbf{x}_j\|) b_j > 0.$$

• Alternatively, ϕ is positive definite on the subspace $V_{k-1} \subset \mathbb{R}^N$:

$$V_{k-1} = \left\{ \mathbf{b} \in \mathbb{R}^N \middle| \sum_{j=1}^N b_j p(\mathbf{x}_j) = 0 \text{ for all } p \in \Pi_{k-1}(\mathbb{R}^d) \right\},$$

where $\Pi_m(\mathbb{R}^d)$ is the space of all d-variate polynomials of degree $\leq m$.

• The case k=0, corresponds to standard positive definite kernels on \mathbb{R}^d .

Definition. A continuous kernel $\Phi: [0, \infty) \to \mathbb{R}$ is said to be completely monotone of order k on $(0, \infty)$ if $(-1)^k \Phi^{(k)}$ is completely monotone on $(0, \infty)$.

Examples:

Definition. A continuous kernel $\Phi : [0, \infty) \to \mathbb{R}$ is said to be completely monotone of order k on $(0, \infty)$ if $(-1)^k \Phi^{(k)}$ is completely monotone on $(0, \infty)$.

Examples:

$$k=1$$

$$k=2$$

$$\Phi(t) = \sqrt{t} \quad \Phi(t) = \sqrt{1+t} \quad \Phi(t) = t^{3/2} \quad \Phi(t) = \frac{1}{2}t \log t$$

Theorem (Micchelli (1986); Guo, Hu, & Sun (1993)). The radial kernel $\phi : [0, \infty)$ is conditionally positive definite on \mathbb{R}^d , for all d, if and only if $\Phi = \phi(\sqrt{\cdot})$ is completely monotone of order k on $(0, \infty)$ and $\Phi^{(k)}$ is not constant.

Remark:

- This is one of the BIG theorems that launched the RBF field.
- It says, for example, that linear, cubic, thin-plate splines, and the multiquadric are conditionally positive definite on \mathbb{R}^d for any d.
- Next, its consequences on RBF interpolation of scattered data...

Definition. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuous and $\{p_i(\mathbf{x})\}_{i=1}^n$ be a basis for $\Pi_{k-1}(\mathbb{R}^d)$ (k > 1). The general RBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{\ell=1}^n d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$$
 and $\sum_{j=1}^{N} c_j p_{\ell}(\mathbf{x}_j) = 0, \ell = 1, ..., n$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|), \ p_{i,\ell} = p_k(\mathbf{x}_i)$$

Definition. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuous and $\{p_i(\mathbf{x})\}_{i=1}^n$ be a basis for $\Pi_{k-1}(\mathbb{R}^d)$ (k > 1). The general RBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{\ell=1}^n d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$$
 and $\sum_{j=1}^{N} c_j p_{\ell}(\mathbf{x}_j) = 0, \ell = 1, ..., n$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|), \ p_{i,\ell} = p_k(\mathbf{x}_i)$$

Theorem (Micchelli (1986)). The above linear system is invertible for any distinct X, provided

- $\operatorname{rank}(P) = n$ (i.e. X is unisolvent on $\Pi_{k-1}(\mathbb{R}^d)$),
- $\Phi = \phi(\sqrt{\cdot})$ is completely monotone of order k on $(0, \infty)$,
- $\Phi^{(k)}$ is not constant.

Definition. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuous and $\{p_i(\mathbf{x})\}_{i=1}^n$ be a basis for $\Pi_{k-1}(\mathbb{R}^d)$ (k > 1). The general RBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{\ell=1}^n d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$$
 and $\sum_{j=1}^{N} c_j p_{\ell}(\mathbf{x}_j) = 0, \ell = 1, ..., n$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|), \ p_{i,\ell} = p_k(\mathbf{x}_i)$$

Example (Thin plate spline, \mathbb{R}^2). Let

- $\phi(r) = r^2 \log(r)$
- $p_1(x,y) = 1$, $p_2(x,y) = x$, and $p_3(x,y) = y$.

The system has a unique solution provided the nodes are not collinear.

Theorem (Micchelli (1986)). Suppose $\Phi = \phi(\sqrt{\cdot})$ is completely monotone of order 1 on $(0, \infty)$ and Φ' is not constant. Then for any distinct set of nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$, and any d, the matrix A with entries $a_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|)$, $i, j = 1, \ldots, N$, has N-1 positive eigenvalues and 1 negative eigenvalue. Hence it is invertible.

Remark:

• This theorem means that for kernels like the popular multiquadric $\phi(r) = \sqrt{1 + (\varepsilon r)^2}$ the basic RBF interpolant

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

has a unique solution for any distinct set of nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$ and sampled target function f on X.

- Augmenting the RBF interpolant with polynomials is not necessary to guarantee uniqueness for order 1 CPD kernels.
- This theorem answered a conjecture from Franke (1983) regarding the multiquadric.

Many good books to consult further on RBF theory and applications:

Interpolation with kernels (revisited)

- Kernel interpolant to $f|_{X}$: $I_X f = \sum_j c_j \Phi(\cdot, \mathbf{x}_j)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \to \mathbb{R}$
 - 1. The kernel should be easy to compute.
 - 2. The kernel interpolant should be uniquely determined by X and $f|_X$.
 - 3. The kernel interpolant should accurately reconstruct f.
- For problems like

Obvious choice: ϕ is a (conditionally) positive definite radial kernel

$$\Phi(\mathbf{x}, \mathbf{x}_j) = \phi(\|\mathbf{x} - \mathbf{x}_j\|_2) = \phi(r)$$

• Leads to radial basis function (RBF) interpolation.

Interpolation with kernels on the sphere

- Kernel interpolant to $f|_{\mathbf{x}}$: $I_X f = \sum_j c_j \Phi(\cdot, \mathbf{x}_j)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \to \mathbb{R}$
 - 1. The kernel should be easy to compute.
 - 2. The kernel interpolant should be uniquely determined by X and $f|_{X}$.
 - 3. The kernel interpolant should accurately reconstruct f.
- For problems like

Obvious(?) choice: Φ is a (conditionally) positive definite zonal kernel:

$$\Phi(\mathbf{x}, \mathbf{x}_i) = \psi(\mathbf{x}^T \mathbf{x}_i) = \psi(t), \ t \in [-1, 1]$$

• Analog of RBF interpolation for the sphere: SBF interpolation.

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

Basic SBF Interpolant for \mathbb{S}^2

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

Basic SBF Interpolant for \mathbb{S}^2

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

Basic SBF Interpolant for \mathbb{S}^2

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

Linear system for determining the interpolation coefficients

$$\begin{bmatrix}
\psi(\mathbf{x}_{1}^{T}\mathbf{x}_{1}) & \psi(\mathbf{x}_{1}^{T}\mathbf{x}_{2}) \cdots \psi(\mathbf{x}_{1}^{T}\mathbf{x}_{N}) \\
\psi(\mathbf{x}_{2}^{T}\mathbf{x}_{1}) & \psi(\mathbf{x}_{2}^{T}\mathbf{x}_{2}) \cdots \psi(\mathbf{x}_{2}^{T}\mathbf{x}_{N}) \\
\vdots & \vdots & \ddots & \vdots \\
\psi(\mathbf{x}_{N}^{T}\mathbf{x}_{1}) & \psi(\mathbf{x}_{N}^{T}\mathbf{x}_{2}) \cdots \psi(\mathbf{x}_{N}^{T}\mathbf{x}_{N})
\end{bmatrix}
\begin{bmatrix}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{bmatrix} = \begin{bmatrix}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{bmatrix}$$

 A_X is guaranteed to be positive definite if ψ is a positive definite zonal kornel zonal kernel

Definition. A kernel $\Psi : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}^T \mathbf{y})$, where $\psi : [-1, 1] \to \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ .

Definition. A kernel $\Psi : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}^T \mathbf{y})$, where $\psi : [-1, 1] \to \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ .

Definition. A zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{d-1} if for any distinct set of nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^{d-1}$ and $\underline{b} \in \mathbb{R}^N \setminus \{0\}$ the matrix $A = \{\psi(\mathbf{x}_i^T \mathbf{x}_j)\}$ is positive definite, i.e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \psi(\mathbf{x}_i^T \mathbf{x}_j) b_j > 0.$$

Remark: PD zonal kernels are sometimes called spherical basis functions (SBFs).

Definition. A kernel $\Psi : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}^T \mathbf{y})$, where $\psi : [-1, 1] \to \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ .

Definition. A zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{d-1} if for any distinct set of nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^{d-1}$ and $\underline{b} \in \mathbb{R}^N \setminus \{0\}$ the matrix $A = \{\psi(\mathbf{x}_i^T \mathbf{x}_j)\}$ is positive definite, i.e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \psi(\mathbf{x}_i^T \mathbf{x}_j) b_j > 0.$$

Remark: PD zonal kernels are sometimes called spherical basis functions (SBFs).

- The study of positive definite kernels on \mathbb{S}^{d-1} started with Schoenberg (1940).
- Extension of this work, including to conditionally positive definite kernels, began in the 1990s (Cheney and Xu (1992)), and continues today.
- Our interest is strictly in \mathbb{S}^2 and we will only present results for this case.

- Any positive definite radial kernel ϕ on \mathbb{R}^3 is also positive definite on \mathbb{S}^2 .
- In fact, they are positive definite zonal kernels, since for $\mathbf{x}, \mathbf{y} \in \mathbb{S}^2$

$$\phi(\|\mathbf{x} - \mathbf{y}\|) = \phi\left(\sqrt{2 - 2\mathbf{x}^T\mathbf{y}}\right) = \psi(\mathbf{x}^T\mathbf{y})$$

- So, standard RBF methods can be used for problems on the sphere \mathbb{S}^2 .
- Cheney (1995) appears to have been the first to mathematically study the specialization of RBFs to the sphere.
- Many others have followed suit, e.g.
 Fasshauer & Schumaker (1998); Baxter & Hubbert (2001); Levesley & Hubbert (2001);
 Hubbert & Morton (2004); zu Castel & Filbir (2005); Narcowich, Sun, & Ward (2007);
 Narcowich, Sun, Ward, & Wendland (2007); Fornberg & Piret (2007); Narcowich,
 Ward, & W (2007); Fuselier, Narcowich, Ward, & W (2009); Fuselier & W (2009)

- Any positive definite radial kernel ϕ on \mathbb{R}^3 is also positive definite on \mathbb{S}^2 .
- In fact, they are positive definite zonal kernels, since for $\mathbf{x}, \mathbf{y} \in \mathbb{S}^2$

$$\phi(\|\mathbf{x} - \mathbf{y}\|) = \phi\left(\sqrt{2 - 2\mathbf{x}^T\mathbf{y}}\right) = \psi(\mathbf{x}^T\mathbf{y})$$

- So, standard RBF methods can be used for problems on the sphere \mathbb{S}^2 .
- Cheney (1995) appears to have been the first to mathematically study the specialization of RBFs to the sphere.
- Many others have followed suit, e.g.
 Fasshauer & Schumaker (1998); Baxter & Hubbert (2001); Levesley & Hubbert (2001);
 Hubbert & Morton (2004); zu Castel & Filbir (2005); Narcowich, Sun, & Ward (2007);
 Narcowich, Sun, Ward, & Wendland (2007); Fornberg & Piret (2007); Narcowich,
 Ward, & W (2007); Fuselier, Narcowich, Ward, & W (2009); Fuselier & W (2009)
- Open question: Are there any advantages to using a purely PD zonal kernel to a restricted PD radial kernel? (Baxter & Hubbert (2001))
- Personally, I have always used restricted radial kernels.

Some references for the material to come:

Spherical harmonics

- A good understanding of functions on the sphere requires one to be wellversed in spherical harmonics.
- Spherical harmonics are the analog of 1-D Fourier series for approximation on spheres of dimension 2 and higher.

- Several ways to introduce spherical harmonics (Freeden & Schreiner 2008)
- We will use the eigenfunction approach and restrict our attention to the 2sphere.
- Following this we review some important results about spherical harmonics.

• Laplacian in spherical coordinates $(x = r \cos \theta \cos \varphi, y = r \cos \theta \sin \varphi, z = r \sin \theta)$

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \left\{ \frac{\partial^2}{\partial \theta^2} - \tan \theta \frac{\partial}{\partial \theta} + \frac{1}{\cos^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right\}$$

 $\Delta_s = \text{Laplace-Beltrami operator}$

• Laplacian in spherical coordinates $(x = r \cos \theta \cos \varphi, y = r \cos \theta \sin \varphi, z = r \sin \theta)$

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \left\{ \frac{\partial^2}{\partial \theta^2} - \tan \theta \frac{\partial}{\partial \theta} + \frac{1}{\cos^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right\}$$

 $\Delta_s = \text{Laplace-Beltrami operator}$

- Spherical harmonics: Set of all functions bounded at $\theta = \pm \frac{\pi}{2}$ or $z = \pm 1$ such that $\Delta_s Y = \lambda Y$.
- Solve using separation of variables to arrive at:

$$Y_{\ell}^{m}(\theta,\varphi) = a_{\ell}^{|m|} P_{\ell}^{|m|}(\cos\theta) e^{im\varphi}, \ \ell = 0, 1, \dots, \ m = -\ell, -\ell + 1, \dots, \ell - 1, \ell.$$

• Here P_{ℓ}^{k} , for $k = 0, 1, ..., \ell = k, k + 1, ...$, are the Associated Legendre functions, given by Rodrigues' formula

$$P_{\ell}^{k}(z) = (1 - z^{2})^{k/2} \frac{d^{k}}{dz^{k}} (P_{\ell}(z)),$$

where P_{ℓ} is the standard Legendre polynomial of degree ℓ .

• The a_{ℓ}^k are normalization factors (e.g. $a_{\ell}^k = \sqrt{((2\ell+1)(\ell-k)!)/(4\pi(\ell+m)!)}$)

- Each spherical harmonic satisfies $\Delta_s Y_\ell^m = -\ell(\ell+1)Y_\ell^m$.
- For each $\ell = 0, 1, \ldots$, there are $2\ell+1$ harmonics with eigenvalue $-\ell(\ell+1)$.

- Each spherical harmonic satisfies $\Delta_s Y_\ell^m = -\ell(\ell+1)Y_\ell^m$.
- For each $\ell = 0, 1, \ldots$, there are $2\ell+1$ harmonics with eigenvalue $-\ell(\ell+1)$.
- Real-form of spherical harmonics:

$$Y_{\ell}^{m}(\theta,\varphi) = Y_{\ell}^{m}(z,\varphi) = \begin{cases} \sqrt{2}a_{\ell}^{m}P_{\ell}^{m}(z)\cos(m\varphi) & m > 0, \\ a_{\ell}^{0}P_{\ell}(z) & m = 0, \\ \sqrt{2}a_{\ell}^{|m|}P_{\ell}^{|m|}(z)\sin(m\varphi) & m < 0. \end{cases}$$

- Each spherical harmonic satisfies $\Delta_s Y_\ell^m = -\ell(\ell+1)Y_\ell^m$.
- For each $\ell = 0, 1, \ldots$, there are $2\ell + 1$ harmonics with eigenvalue $-\ell(\ell+1)$.
- Real-form of spherical harmonics:

$$Y_{\ell}^{m}(\theta,\varphi) = Y_{\ell}^{m}(z,\varphi) = \begin{cases} \sqrt{2}a_{\ell}^{m}P_{\ell}^{m}(z)\cos(m\varphi) & m > 0, \\ a_{\ell}^{0}P_{\ell}(z) & m = 0, \\ \sqrt{2}a_{\ell}^{|m|}P_{\ell}^{|m|}(z)\sin(m\varphi) & m < 0. \end{cases}$$

• Can also be expressed purely in Cartesian coordinates $(\mathbf{x} = (x, y, z) \in \mathbb{S}^2)$:

$$Y_{\ell}^{m}(\mathbf{x}) = Y_{\ell}^{m}(x, y, z) = \begin{cases} \sqrt{2}a_{\ell}^{m}Q_{\ell}^{m}(z)\frac{1}{2}\left((x+iy)^{m} + (x-iy)^{m}\right) & m > 0, \\ a_{\ell}^{0}P_{\ell}(z) & m = 0, \\ \sqrt{2}a_{\ell}^{|m|}Q_{\ell}^{|m|}(z)\frac{1}{2i}\left((x+iy)^{-m} - (x-iy)^{-m}\right) & m < 0. \end{cases}$$
 where $Q_{\ell}^{m}(z) = (-1)^{m}\frac{\partial^{m}}{\partial z^{m}}P_{\ell}(z).$

• We will sometimes switch notation from $Y_{\ell}^{m}(\theta,\varphi)$ to $Y_{\ell}^{m}(\mathbf{x})$.

• Spherical harmonics $Y_{\ell}^{m}(\mathbf{x})$ in Cartesian form, for $\ell = 0, 1, 2, 3$.

• Spherical harmonics satisfy the $L_2(\mathbb{S}^2)$ orthogonality condition:

$$\int_{\mathbb{S}^2} Y_{\ell}^m(\mathbf{x}) Y_k^n(\mathbf{x}) d\mu(\mathbf{x}) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\pi}^{\pi} Y_{\ell}^m(\theta, \varphi) Y_k^n(\theta, \varphi) \cos \theta d\varphi d\theta = \delta_{k\ell} \delta_{mn}$$

- They form a complete orthonormal basis for $L_2(\mathbb{S}^2)$.
- If $f \in L_2(\mathbb{S}^2)$ then

$$f(\mathbf{x}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \hat{f}_{\ell}^{m} Y_{\ell}^{m}(\mathbf{x}), \text{ where } \hat{f}_{\ell}^{m} = \int_{\mathbb{S}^{2}} f(\mathbf{x}) Y_{\ell}^{m}(\mathbf{x}) d\mu(\mathbf{x}).$$

- There is no counter part to the fast Fourier transform (FFT) for computing the spherical harmonic coefficients \hat{f}_{ℓ}^{m} .
 - Fast methods of similar complexity $(\mathcal{O}(N \log N))$ have been developed, but have very large constants associated with them. So an actual computational advantage does not occur until N is extremely large.

- Two useful results on spherical harmonics we will use:
- Addition theorem: Let $\mathbf{x}, \mathbf{y} \in \mathbb{S}^2$, then for $\ell = 0, 1, \dots$

$$\frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\mathbf{x}) Y_{\ell}^{m}(\mathbf{y}) = P_{\ell}(\mathbf{x}^{T}\mathbf{y}),$$

where P_{ℓ} is the standard Legendre polynomial of degree ℓ .

• Funk-Hecke formula: Let $f \in L_1(-1,1)$ and have the Legendre expansion

$$f(t) = \sum_{k=0}^{\infty} a_k P_k(t)$$
, where $a_k = \frac{2k+1}{2} \int_{-1}^{1} f(t) P_k(t) dt$.

Then for any spherical harmonic Y_{ℓ}^{m} the following holds:

$$\int_{\mathbb{S}^2} f(\mathbf{x} \cdot \mathbf{y}) Y_{\ell}^m(\mathbf{x}) d\mu(\mathbf{x}) = \frac{4\pi a_{\ell}}{2\ell + 1} Y_{\ell}^m(\mathbf{y}).$$

Theorems for positive definite zonal kernels supplementary material

Definition. A zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^2 if for any distinct set of nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$ and $\underline{b} \in \mathbb{R}^N \setminus \{0\}$ the matrix $A = \{\psi(\mathbf{x}_i^T \mathbf{x}_j)\}$ is positive definite, i.e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \psi(\mathbf{x}_i^T \mathbf{x}_j) b_j > 0.$$

Theorem (Schoenberg (1942)). If a zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is expressible in a Legendre series as

$$\psi(t) = \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(t)$$

where $a_{\ell} > 0$ for $\ell \geq 0$ and $\sum_{\ell=0}^{\infty} a_{\ell} < \infty$ then ψ is a positive definite zonal kernel on \mathbb{S}^2 .

Theorem (Schoenberg (1942)). If a zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is expressible in a Legendre series as

$$\psi(t) = \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(t)$$

where $a_{\ell} > 0$ for $\ell \geq 0$ and $\sum_{\ell=0}^{\infty} a_{\ell} < \infty$ then ψ is a positive definite zonal kernel on \mathbb{S}^2 .

Proof:

- 1. The condition $\sum_{\ell=0}^{\infty} a_{\ell} < \infty$ guarantees that $\psi \in C(\mathbb{S}^2)$.
- 2. Use the addition theorem: Let $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$ and $\underline{b} \in \mathbb{R}^N \setminus \{0\}$ then

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \psi(\mathbf{x}_i^T \mathbf{x}_j) b_j = \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(\mathbf{x}_i^T \mathbf{x}_j)$$

$$= \sum_{\ell=0}^{\infty} \frac{4\pi a_{\ell}}{2\ell+1} \sum_{m=-\ell}^{\ell} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j Y_{\ell}^m(\mathbf{x}_i) Y_{\ell}^m(\mathbf{x}_j)$$

$$= \sum_{\ell=0}^{\infty} \frac{4\pi a_{\ell}}{2\ell+1} \sum_{m=-\ell}^{\ell} \left| \sum_{j=1}^{N} b_j Y_{\ell}^m(\mathbf{x}_j) \right|^2 \ge 0$$

3. Show that the quadratic form must be strictly positive.

Theorem (Schoenberg (1942)). If a zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is expressible in a Legendre series as

$$\psi(t) = \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(t)$$

where $a_{\ell} > 0$ for $\ell \geq 0$ and $\sum_{\ell=0}^{\infty} a_{\ell} < \infty$ then ψ is a positive definite zonal kernel on \mathbb{S}^2 .

- Necessary and sufficient conditions on the Legendre coefficients a_{ℓ} were only given in 2003 by Chen, Menegatto, & Sun.
 - Their result says the set $\{\ell \in \mathbb{N}_0 | a_{\ell} > 0\}$ must contain infinitely many odd and infinitely many even integers.

Conditionally positive definite zonal kernels Supplementary material

• Similar to \mathbb{R}^d , we can define conditionally positive definite zonal kernels.

Definition. A continuous zonal kernel $\psi:[-1,1]\to\mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{S}^2 if, for any distinct X = $\{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$, and all $\mathbf{b} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$ satisfying

$$\sum_{j=1}^{N} b_j p(\mathbf{x}_j) = 0$$

for all spherical harmonics of degree < k, the following is satisfied:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \psi(\mathbf{x}_i^T \mathbf{x}_j) b_j > 0.$$

Theorem. If the Legendre expansion coefficients of $\psi: [-1,1] \to \mathbb{R}$ satisfy $a_{\ell} > 0$ for $\ell \geq k$ and $\sum_{\ell=0}^{\infty} a_{\ell} < \infty$.

Proof: Use same ideas as the positive definite case.

Definition. Let $\psi : [-1,1] \to \mathbb{R}$ be a continuous zonal kernel and $\{p_i(\mathbf{x})\}_{i=1}^{k^2}$ be a basis for the space of all spherical harmonics of degree k-1. The general SBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \psi(\mathbf{x}^T \mathbf{x}_j) + \sum_{\ell=1}^{k^2} d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i$$
, $i = 1, ..., N$ and $\sum_{j=1}^{N} c_j p_{\ell}(\mathbf{x}_j) = 0$, $\ell = 1, ..., k^2$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \psi(\mathbf{x}_i^T \mathbf{x}_j), \ p_{i,\ell} = p_{\ell}(\mathbf{x}_i)$$

Theorem. The above linear system is invertible for any distinct X, provided

- $\operatorname{rank}(P) = k^2$,
- ψ is conditionally positive definite of order k.

Definition. Let $\psi: [-1,1] \to \mathbb{R}$ be a continuous zonal kernel and $\{p_i(\mathbf{x})\}_{i=1}^{k^2}$ be a basis for the space of all spherical harmonics of degree k-1. The general SBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \psi(\mathbf{x}^T \mathbf{x}_j) + \sum_{\ell=1}^{k^2} d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i$$
, $i = 1, ..., N$ and $\sum_{j=1}^{N} c_j p_{\ell}(\mathbf{x}_j) = 0$, $\ell = 1, ..., k^2$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \psi(\mathbf{x}_i^T \mathbf{x}_j), \ p_{i,\ell} = p_{\ell}(\mathbf{x}_i)$$

Example (Restricted thin plate spline, or surface spline). Let

- $\psi(t) = (1-t)\log(2-2t)$
- $p_1(\mathbf{x}) = 1$, $p_2(\mathbf{x}) = x$, $p_3(\mathbf{x}) = y$, and $p_4(\mathbf{x}) = z$.

The system has a unique solution provided X are distinct.

Spherical Fourier coefficients

• More useful to work with a zonal kernels spherical Fourier coefficients $\hat{\psi}_{\ell}$. These are related to Legendre coefficients through the Funk-Hecke formula:

$$\psi(\mathbf{x}^T\mathbf{y}) = \sum_{\ell=0}^{\infty} \hat{\psi}(\ell) \sum_{m=-\ell}^{\ell} Y_{\ell}^m(\mathbf{x}) Y_{\ell}^m(\mathbf{y}) \Longrightarrow \hat{\psi}(\ell) := \frac{4\pi a_{\ell}}{2\ell + 1}$$

- Error estimates for SBF interpolants are governed by the asymptotic decay of $\hat{\psi}_{\ell}$.
- Stable algorithms (RBF-QR) also work with $\hat{\psi}_{\ell}$ (more on this later...)
- Baxter & Hubbert (2001) computed $\hat{\psi}_{\ell}$ for many standard RBFs restricted to \mathbb{S}^2 .
- zu Castell & Filbir (2005) and Narcowich, Sun, & Ward (2007) linked the spherical Fourier coefficients of restricted RBFs to the standard Fourier coefficients in \mathbb{R}^3 :

$$\hat{\psi}_{\ell} = \int_0^\infty u \hat{\phi}(u) J_{\ell+1/2}(u) du,$$

where $\hat{\phi}$ is the Hankel transform of the RBF in \mathbb{R}^3 .

Examples of positive definite zonal kernels

• Examples of positive definite (PD) and order k conditionally positive definite (CPD(k)) zonal kernels with their spherical Fourier coefficients.

Name	Kernel $(r(t) = \sqrt{2-2t})$	Fourier coefficients $\hat{\psi}_{\ell}$ $(0 < h < 1, \varepsilon > 0)$	Type
Legendre	$\psi(t) = (1 + h^2 - 2ht)^{-1/2}$	$\hat{\psi}_\ell = rac{2\pi h^\ell}{\ell+1/2} \ \hat{\psi}_\ell = 4\pi h^\ell$	PD
Poisson	$\psi(t) = (1 - h^2)(1 + h^2 - 2ht)^{-3/2}$	$\hat{\psi}_\ell = 4\pi h^{'\!\ell}$	PD
Spherical	$\psi(t) = 1 - r(t) + \frac{(r(t))^2}{2} \log\left(\frac{r(t) + 2}{r(t)}\right)$	$\hat{\psi}_{\ell} = rac{2\pi}{(\ell+1/2)(\ell+1)(\ell+2)}$	PD
Gaussian	$\psi(t) = \exp(-(\varepsilon r(t))^2)$	$\hat{\psi}_{\ell} = \frac{2\pi}{(\ell+1/2)(\ell+1)(\ell+2)}$ $\varepsilon^{2\ell} \frac{4\pi^{3/2}}{\varepsilon^{2\ell+1}} e^{-2\varepsilon^2} I_{\ell+1/2}(2\varepsilon^2)$	PD
IMQ	$\psi(t) = \frac{1}{\sqrt{1 + (\varepsilon r(t))^2}}$	$\varepsilon^{2\ell} \frac{4\pi}{(\ell+1/2)} \left(\frac{2}{1+\sqrt{4\varepsilon^2+1}}\right)^{2\ell+1}$	PD
MQ	$\psi(t) = -\sqrt{1 + (\varepsilon r(t))^2}$	$\varepsilon^{2\ell} \frac{2\pi (2\varepsilon^2 + 1 + (\ell + 1/2)\sqrt{1 + 4\varepsilon^2})}{(\ell + 3/2)(\ell + 1/2)(\ell - 1/2)} \left(\frac{2}{1 + \sqrt{4\varepsilon^2 + 1}}\right)^{2\ell + 1}$	CPD(1)
TPS	$\psi(t) = (r(t))^2 \log(r(t))$	$\frac{8\pi}{(\ell+2)(\ell+1)\ell(\ell-1)} \\ 18\pi$	CPD(2)
Cubic	$\psi(t) = (r(t))^3$	$\frac{18\pi}{(\ell+5/2)(\ell+3/2)(\ell+1/2)(\ell-1/2)(\ell-3/2)}$	CPD(2)

• First three kernels are specific to \mathbb{S}^2 , while the last 5 are RBFs restricted to \mathbb{S}^2 .

Error estimates

- Goal: Present some known results on error estimates for SBF interpolants for target function of various smoothness.
- We will introduce (or review) some background notation and material that is necessary for the proofs of the estimates, but will not prove them.
 - Reproducing kernel Hilbert spaces (RKHS)
 - Sobolev spaces on \mathbb{S}^2 ;
 - Native spaces;
 - Geometric properties of node sets $X \subset \mathbb{S}^2$.
- Brief historical notes regarding SBF error estimates:
 - Earliest results appear to be Freeden (1981), but do not depend on ψ or target.
 - First Sobolev-type estimates were given in Jetter, Stöckler, & Ward (1999).
 - Since then many more results have appeared, e.g.
 Levesley, Light, Ragozin, & Sun (1999), v. Golitschek & Light (2001), Morton & Neamtu (2002), Narcowich & Ward (2002), Hubbert & Morton (2004,2004), Levesley & Sun (2005), Narcowich, Sun, & Ward (2007), Narcowich, Sun, Ward, & Wendland (2007), Sloan & Sommariva (2008), Sloan & Wendland (2009), Hangelbroek (2011).

- Reproducing kernel Hilbert spaces (RKHS) play a key role deriving error estimates for SBF (and more generally RBF) interpolants.
- They allow one to view the interpolation problem as the solution to a particular optimization problem.

Definition. Let $\mathcal{F}(\Omega)$ be a Hilbert space of functions $f:\Omega\to\mathbb{R}$ with inner product $\langle\cdot,\cdot\rangle_{\mathcal{F}}$. If there exists a kernel $\Phi:\Omega\times\Omega\to\mathbb{R}$ such that for all $\mathbf{y}\in\Omega$

$$f(\mathbf{y}) = \langle f, \Phi(\cdot, \mathbf{y}) \rangle_{\mathcal{F}} \text{ for all } f \in \mathcal{F},$$

then \mathcal{F} is called a RKHS with reproducing kernel Φ .

- Reproducing kernel Hilbert spaces (RKHS) play a key role deriving error estimates for SBF (and more generally RBF) interpolants.
- They allow one to view the interpolation problem as the solution to a particular optimization problem.

Definition. Let $\mathcal{F}(\Omega)$ be a Hilbert space of functions $f:\Omega\to\mathbb{R}$ with inner product $\langle\cdot,\cdot\rangle_{\mathcal{F}}$. If there exists a kernel $\Phi:\Omega\times\Omega\to\mathbb{R}$ such that for all $\mathbf{y}\in\Omega$

$$f(\mathbf{y}) = \langle f, \Phi(\cdot, \mathbf{y}) \rangle_{\mathcal{F}} \text{ for all } f \in \mathcal{F},$$

then \mathcal{F} is called a RKHS with reproducing kernel Φ .

- The reproducing kernel Φ of a RKHS is unique.
- Existence of Φ is equivalent to the point evaluation functional $\delta_{\mathbf{y}} : \mathcal{F} \to \mathbb{R}$ being continuous. (Implied by Reisz representation theorem).
- Φ also satisfies the following: (1) $\Phi(\mathbf{x}, \mathbf{y}) = \Phi(\mathbf{y}, \mathbf{x})$ for $x, y \in \Omega$; (2) Φ is positive semi-definite on Ω .

Example. The space spanned by all spherical harmonics of degree n with the standard $L_2(\mathbb{S}^2)$ inner product $\langle \cdot, \cdot \rangle_{L_2}$ is a RKHS with reproducing kernel

$$\Phi_n(\mathbf{x}, \mathbf{y}) = \sum_{k=0}^n \frac{2k+1}{4\pi} P_k(\mathbf{x}^T \mathbf{y}).$$

Example. The space spanned by all spherical harmonics of degree n with the standard $L_2(\mathbb{S}^2)$ inner product $\langle \cdot, \cdot \rangle_{L_2}$ is a RKHS with reproducing kernel

$$\Phi_n(\mathbf{x}, \mathbf{y}) = \sum_{k=0}^n \frac{2k+1}{4\pi} P_k(\mathbf{x}^T \mathbf{y}).$$

Let
$$\mathbf{x}, \mathbf{y} \in \mathbb{S}^2$$
 and $f(\mathbf{x}) = \sum_{\ell=0}^n \sum_{m=-\ell}^\ell c_\ell^m Y_\ell^m(\mathbf{x})$ for some coefficients c_ℓ^m . Then

$$\begin{split} \langle f, \Phi_n(\cdot, \mathbf{y}) \rangle_{L_2} &= \int_{\mathbb{S}^2} f(\mathbf{x}) \Phi_n(\mathbf{x}, \mathbf{y}) d\mu(\mathbf{x}) \\ &= \int_{\mathbb{S}^2} \left(\sum_{\ell=0}^n \sum_{m=-\ell}^\ell c_\ell^m Y_\ell^m(\mathbf{x}) \right) \left(\sum_{k=0}^n \frac{2k+1}{4\pi} P_k(\mathbf{x}^T \mathbf{y}) \right) d\mu(\mathbf{x}) \\ &= \sum_{k=0}^n \frac{2k+1}{4\pi} \sum_{\ell=0}^n \sum_{m=-\ell}^\ell c_\ell^m \int_{\mathbb{S}^2} P_k(\mathbf{x}^T \mathbf{y}) Y_\ell^m(\mathbf{x}) d\mu(\mathbf{x}) \\ &= \sum_{k=0}^n \frac{2k+1}{4\pi} \sum_{m=-k}^k \frac{4\pi}{2k+1} c_k^m Y_k^m(\mathbf{y}) \quad \text{(Funk-Hecke formula)} \\ &= \sum_{k=0}^n \sum_{m=-k}^k c_k^m Y_k^m(\mathbf{y}) = f(\mathbf{y}) \end{split}$$

Sobolev spaces

• Sobolev spaces on \mathbb{S}^2 can be defined in terms of spherical Harmonics.

Definition. The Sobolev space of order τ on \mathbb{S}^2 is given by

$$H^{\tau}(\mathbb{S}^2) = \left\{ f \in L_2(\mathbb{S}^2) \middle| \|f\|_{H^{\tau}}^2 = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} (1 + \ell(\ell+1))^{\tau} \middle| \hat{f}_{\ell}^m \middle|^2 < \infty \right\}.$$

Here $\|\cdot\|_{H^{\tau}}$ is a norm induced by the inner product

$$\langle f, g \rangle_{H^{\tau}} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} (1 + \ell(\ell+1))^{\tau} \hat{f}_{\ell}^{m} \hat{g}_{\ell}^{m},$$

where
$$\hat{f}_{\ell}^{m} = \langle f, Y_{\ell}^{m} \rangle_{L_{2}} = \int_{\mathbb{S}^{2}} f(\mathbf{x}) Y_{\ell}^{m}(\mathbf{x}) d\mu(\mathbf{x}).$$

• Compare to Sobolev spaces on \mathbb{R}^3 :

$$H^{\beta}(\mathbb{R}^3) = \left\{ f \in L_2(\mathbb{R}^3) \middle| \|f\|_{H^{\beta}}^2 = \int_{\mathbb{R}^3} (1 + \|\boldsymbol{\omega}\|^2)^{\beta} \left| \hat{f}(\boldsymbol{\omega}) \right|^2 d\mathbf{x} < \infty \right\}.$$

• Sobolev spaces on \mathbb{S}^2 can be defined in terms of spherical Harmonics.

Definition. The Sobolev space of order τ on \mathbb{S}^2 is given by

$$H^{\tau}(\mathbb{S}^2) = \left\{ f \in L_2(\mathbb{S}^2) \middle| \|f\|_{H^{\tau}}^2 = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} (1 + \ell(\ell+1))^{\tau} \middle| \hat{f}_{\ell}^m \middle|^2 < \infty \right\}.$$

- Sobolev embedding theorem implies $H^{\tau}(\mathbb{S}^2)$ is continuously embedded in $C(\mathbb{S}^2)$ for $\tau > 1$. Thus, $H^{\tau}(\mathbb{S}^2)$ is a RKHS.
- Can show the reproducing kernel is $\Phi_{\tau}(\mathbf{x}, \mathbf{y}) = \sum_{\ell=0}^{\infty} (1 + \ell(\ell+1))^{-\tau} \frac{2\ell+1}{4\pi} P_{\ell}(\mathbf{x} \cdot \mathbf{y}).$

- Each positive definite zonal kernel ψ naturally gives rise to a RKHS on \mathbb{S}^2 , which is called the native space of ψ .
- This is the natural space to understand approximation with shifts of ψ .

Definition. Let ψ be a positive definite zonal kernel with spherical Fourier coefficients $\hat{\psi}_{\ell}$, $\ell = 0, 1, \ldots$ The native space \mathcal{N}_{ψ} of ψ is given by

$$\mathcal{N}_{\psi} = \left\{ f \in L_2(\mathbb{S}^2) \middle| ||f||_{\mathcal{N}_{\psi}} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{|\hat{f}_{\ell}^m|^2}{\hat{\psi}_{\ell}} < \infty \right\},$$

with inner product

$$\langle f, g \rangle_{\mathcal{N}_{\psi}} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{\hat{f}_{\ell}^{m} \hat{g}_{\ell}^{m}}{\hat{\psi}_{\ell}}.$$

• A similar definition holds for conditionally positive definite kernels, but the inner product has to be slightly modified (see Hubbert, 2002).

- An important "optimality" result stems from $\mathcal{N}_{\psi}(\mathbb{S}^2)$ being a RKHS.
- Consider the following optimization problem:

Problem. Let $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ be a distinct set of nodes on \mathbb{S}^2 and let $\{f_1, \dots, f_N\}$ be samples of some target function f on X. Find $s \in \mathcal{N}_{\psi}(\mathbb{S}^2)$ that satisfies $s(\mathbf{x}_j) = f_j, j = 1, \dots, N$ and has minimal native space norm $||s||_{\mathcal{N}_{\psi}}$, i.e.

minimize
$$\left\{ \|s\|_{\mathcal{N}_{\psi}} \middle| s \in \mathcal{N}_{\psi}(\mathbb{S}^2) \text{ with } s \middle|_X = f \middle|_X \right\}.$$

Solution: s is the unique SBF interpolant to $f|_X$ using the kernel ψ .

- SBF interpolants also have nice properties in their respective native spaces:
 - 1. $||f I_{\psi,X}f||_{\mathcal{N}_{\eta}}^2 + ||I_{\psi,X}f||_{\mathcal{N}_{\eta}}^2 = ||f||_{\mathcal{N}_{\eta}}^2$
 - 2. $||f I_{\psi,X}f||_{\mathcal{N}_{\psi}} \le ||f||_{\mathcal{N}_{\psi}}$

• Note similarity between Sobolev space $H^{\tau}(\mathbb{S}^2)$ and $\mathcal{N}_{\psi}(\mathbb{S}^2)$:

$$H^{\tau}(\mathbb{S}^{2}) = \left\{ f \in L_{2}(\mathbb{S}^{2}) \middle| \|f\|_{H^{\tau}}^{2} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} (1 + \ell(\ell+1))^{\tau} \middle| \hat{f}_{\ell}^{m} \middle|^{2} < \infty \right\}$$
$$\mathcal{N}_{\psi}(\mathbb{S}^{2}) = \left\{ f \in L_{2}(\mathbb{S}^{2}) \middle| \|f\|_{\mathcal{N}_{\psi}} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{|\hat{f}_{\ell}^{m}|^{2}}{\hat{\psi}_{\ell}} < \infty \right\}$$

- If $\hat{\psi}_{\ell} \sim (1 + \ell(\ell+1))^{-\tau}$, then it follows that $\mathcal{N}_{\psi} = H^{\tau}$, with equivalent norms.
- This is one reason we care about the asymptotic behavior of $\hat{\psi}_{\ell}$.
- For RBFs restricted to \mathbb{S}^2 , we have the following nice result connecting the asymptotics of the spherical Fourier coefficients to the Fourier transform (Levesley & Hubbert (2001), zu Castell & Filbir (2005), Narcowich, Sun, & Ward (2007)):

If ψ is an SBF obtained by restricting an RBF ϕ to \mathbb{S}^2 and if $\hat{\phi}(\boldsymbol{\omega}) \sim (1 + \|\boldsymbol{\omega}\|_2^2)^{-(\tau+1/2)}$ then $\hat{\psi}_{\ell} \sim (1 + \ell(\ell+1))^{-\tau}$.

• Examples of radial kernels ϕ and their norm-equivalent native spaces \mathcal{N}_{ψ} when restricted to \mathbb{S}^2 :

Name	RBF (use $r = \sqrt{2 - 2t}$ to get SBF ψ)	$\mathcal{N}_{\psi}(\mathbb{S}^2)$
Matern	$\phi_2(r) = e^{-\varepsilon r}$	$H^{1.5}(\mathbb{S}^2)$
TPS(1)	$\phi(r) = r^2 \log(r)$	$H^2(\mathbb{S}^2)$
Cubic	$\phi(r) = r^3$	$\mid H^{2.5}(\mathbb{S}^2) \mid$
TPS(2)	$\phi(r) = r^4 \log(r)$	$H^3(\mathbb{S}^2)$
Wendland	$\phi_{3,2}(r) = (1 - \varepsilon r)^{6}_{+}(3 + 18(\varepsilon r) + 15(\varepsilon r)^{2})$	$\mid H^{3.5}(\mathbb{S}^2) \mid$
Matern	$\phi_5(r) = e^{-\varepsilon r} (15 + 15(\varepsilon r) + 6(\varepsilon r)^2 + (\varepsilon r)^3)$	$\mid H^{4.5}(\mathbb{S}^2) \mid$

- The spherical Fourier coefficients for all these restricted kernels have algebraic decay rates.
- For kernels with spherical Fourier coefficients with exponential decay rates (e.g. Gaussian and multiquadric) the Native spaces are no longer equivalent to Sobolev spaces.
- These natives spaces do satisfy: $\mathcal{N}_{\psi}(\mathbb{S}^2) \subset H^{\tau}(\mathbb{S}^2)$ for all $\tau > 1$.
- Error estimates for interpolants are directly linked to the native space of ψ .

Geometric properties of node sets

- The following properties for node sets on the sphere appear in the error estimates:
- Mesh norm

$$h_X = \sup_{\mathbf{x} \in \mathbb{S}^2} \operatorname{dist}_{\mathbb{S}^2}(\mathbf{x}, X)$$

• Separation radius

$$q_X = \frac{1}{2} \min_{i \neq j} \operatorname{dist}_{\mathbb{S}^2}(\mathbf{x}_i, \mathbf{x}_j)$$

• Mesh ratio

$$\rho_X = \frac{h_X}{q_X}$$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$$

(Only part of the sphere is shown)

We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton (2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

- ψ is the SBF
- $\hat{\psi}_{\ell} \sim (1 + \ell(\ell + 1))^{-\tau}, \, \tau > 1$
- $\mathcal{N}_{\psi}(\mathbb{S}^2) = H^{\tau}(\mathbb{S}^2)$
- $I_X f$ is SBF interpolant of $f|_X$

- $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$
- $h_X = \text{mesh-norm}$
 - $q_X = \text{separation radius}$
- $\rho_X = h_X/q_X$, mesh ratio

Theorem. Target functions in the native space.

If $f \in H^{\tau}(\mathbb{S}^2)$ then $||f - I_X f||_{L_p(\mathbb{S}^2)} = \mathcal{O}(h_X^{\tau - 2(1/2 - 1/p)_+})$ for $1 \le p \le \infty$. In particular,

$$||f - I_X f||_{L_1(\mathbb{S}^2)} = \mathcal{O}(h_X^{\tau})$$

$$||f - I_X f||_{L_2(\mathbb{S}^2)} = \mathcal{O}(h_X^{\tau})$$

$$||f - I_X f||_{L_{\infty}(\mathbb{S}^2)} = \mathcal{O}(h_X^{\tau-1})$$

We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton (2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

- ψ is the SBF
- $\hat{\psi}_{\ell} \sim (1 + \ell(\ell + 1))^{-\tau}, \, \tau > 1$
- $\mathcal{N}_{\psi}(\mathbb{S}^2) = H^{\tau}(\mathbb{S}^2)$
- $I_X f$ is SBF interpolant of $f|_X$

- $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$
- $h_X = \text{mesh-norm}$
 - q_X = separation radius
 - $\rho_X = h_X/q_X$, mesh ratio

Theorem. Target functions twice as smooth as the native space.

If
$$f \in H^{2\tau}(\mathbb{S}^2)$$
 then $||f - I_X f||_{L_p(\mathbb{S}^2)} = \mathcal{O}(h_X^{2\tau})$ for $1 \le p \le \infty$.

Remark. Known as the "doubling trick" from spline theory. (Schaback 1999)

We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton (2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

- ψ is the SBF
- $\hat{\psi}_{\ell} \sim (1 + \ell(\ell + 1))^{-\tau}, \, \tau > 1$
- $\mathcal{N}_{\psi}(\mathbb{S}^2) = H^{\tau}(\mathbb{S}^2)$
- $I_X f$ is SBF interpolant of $f|_X$

- $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$
- $h_X = \text{mesh-norm}$
- $q_X = \text{separation radius}$
- $\rho_X = h_X/q_X$, mesh ratio

Theorem. Target functions rougher than the native space.

If
$$f \in H^{\beta}(\mathbb{S}^2)$$
 for $\tau > \beta > 1$ then $||f - I_X f||_{L_p(\mathbb{S}^2)} = \mathcal{O}(\rho^{\tau - \beta} h_X^{\tau - 2(1/2 - 1/p)_+})$ for $1 \le p \le \infty$.

Remark.

- (1) Referred to as "escaping the native space". (Narcowich, Ward, & Wendland (2005, 2006)).
- (2) These rates are the best possible.

• Error estimates for infinitely smooth kernels (e.g. Gaussian, multiquadric). Jetter, Stöckler, & Ward (1999)

Notation:

- ψ is the SBF
- $\hat{\psi}_{\ell} \sim \exp(-\alpha(2\ell+1)), \alpha > 0$
- $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$
- $h_X = \text{mesh-norm}$

•
$$\mathcal{N}_{\psi}(\mathbb{S}^2) = \left\{ f \in L_2(\mathbb{S}^2) \middle| \|f\|_{\mathcal{N}_{\psi}} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{|\hat{f}_{\ell}^m|^2}{\hat{\psi}_{\ell}} < \infty \right\}$$

Theorem. Target functions in the native space.

If
$$f \in \mathcal{N}_{\psi}(\mathbb{S}^2)$$
 then $||f - I_X f||_{L_{\infty}(\mathbb{S}^2)} = \mathcal{O}(h_X^{-1} \exp(-\alpha/2h_X))$.

Remarks:

- (1) This is called spectral (or exponential) convergence.
- (2) Function space may be small, but does include all band-limited functions.
- (3) Only known result I am aware of (too bad there are not more).
- (4) Numerical results indicate convergence is also fine for less smooth functions.

Optimal nodes

 If one has the freedom to choose the nodes, then the error estimates indicate they should be roughly as evenly spaced as possible.

What about the shape parameter?

Smooth kernels with a shape parameter.

$$\underline{\mathsf{Ex}}: \quad \phi(r) = \exp(-(\varepsilon r)^2) \quad \phi(r) = \frac{1}{\sqrt{1 + (\varepsilon r)^2}} \quad \phi(r) = \sqrt{1 + (\varepsilon r)^2}$$

<u>Issue:</u> Effect of decreasing ε leads to severe ill-conditioning of interp. matrices

Basis functions get flatter as $\varepsilon \longrightarrow 0$

Linear system for determining the interpolation coefficients

$$\underbrace{\begin{bmatrix} \phi(\|\mathbf{x}_{1} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{1} - \mathbf{x}_{N}\|) \\ \phi(\|\mathbf{x}_{2} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{2} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{2} - \mathbf{x}_{N}\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\|\mathbf{x}_{N} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{N} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{N} - \mathbf{x}_{N}\|) \end{bmatrix}}_{A_{X}} \underbrace{\begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{N} \end{bmatrix}}_{\underline{\underline{c}}} = \underbrace{\begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{N} \end{bmatrix}}_{\underline{\underline{f}}}$$

 A_X is guaranteed to be positive definite if ϕ is positive definite.

RBF-Direct

RBF interpolation in the "flat" limit

RBF interpolant:
$$I_{X,\varepsilon}f(\mathbf{x}) = \sum_{j=1}^N c_j(\varepsilon)\phi_\varepsilon(\|\mathbf{x}-\mathbf{x}_j\|)$$

Theorem (Driscoll & Fornberg (2002)). For N nodes in 1-D, the RBF interpolant (for certain smooth kernels) converges to the standard Lagrange interpolant as $\varepsilon \longrightarrow 0$ (flat limit)

- Higher dimensions: Limit usually exits and takes the form of a multivariate polynomial as $\varepsilon \longrightarrow 0$.
 - Fornberg, W, & Larsson (2004), Larsson & Fornberg (2005), Schaback (2005,2006), Lee, Yoon, & Yoon (2007)
 - In the case of the Gaussian kernel, the interpolant always converges to the de Boor & Ron "least polynomial interpolant".
- Sphere: Limit (usually) exits and converges to a spherical harmonic interpolant (Fornberg & Piret (2007)).

Base vs. space

• Key observation: The space spanned by linear combinations of positive definite radial kernels (in \mathbb{R}^d or \mathbb{S}^2) is good for approximation

BUT, the standard basis $\{\phi(\cdot, \mathbf{x}_1), \dots, \phi(\cdot, \mathbf{x}_N)\}$ can be problematic.

Analogy:
(Fornberg)
Vectors

etors

Bad basis for \mathbb{R}^2

Good basis for \mathbb{R}^2

Bad basis: x^n , $n = 0, 1, \dots$

Chebyshev basis: $T_n(x)$, n = 0, 1, ...

Using a bad basis for flat kernels:

Using a good basis for flat kernels:

Behavior of interpolants in the flat limit

• For cardinal data $f(\mathbf{x}_j) = \begin{cases} 1 & \text{if } j = 1 \\ 0 & \text{if } j \neq 1 \end{cases}$ the interpolant can be written as

$$I_{X,\varepsilon}f(\mathbf{x}) = \frac{\det \begin{bmatrix} \phi_{\varepsilon}(\|\mathbf{x} - \mathbf{x}_1\|) & \phi_{\varepsilon}(\|\mathbf{x} - \mathbf{x}_2\|) & \cdots & \phi_{\varepsilon}(\|\mathbf{x} - \mathbf{x}_N\|) \\ \phi_{\varepsilon}(\|\mathbf{x}_2 - \mathbf{x}_1\|) & \phi_{\varepsilon}(\|\mathbf{x}_2 - \mathbf{x}_2\|) & \cdots & \phi_{\varepsilon}(\|\mathbf{x}_2 - \mathbf{x}_N\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{\varepsilon}(\|\mathbf{x}_N - \mathbf{x}_1\|) & \phi_{\varepsilon}(\|\mathbf{x}_N - \mathbf{x}_2\|) & \cdots & \phi_{\varepsilon}(\|\mathbf{x}_N - \mathbf{x}_N\|) \end{bmatrix}}{\det \begin{bmatrix} \phi_{\varepsilon}(\|\mathbf{x}_1 - \mathbf{x}_1\|) & \phi_{\varepsilon}(\|\mathbf{x}_1 - \mathbf{x}_2\|) & \cdots & \phi_{\varepsilon}(\|\mathbf{x}_1 - \mathbf{x}_N\|) \\ \phi_{\varepsilon}(\|\mathbf{x}_2 - \mathbf{x}_1\|) & \phi_{\varepsilon}(\|\mathbf{x}_2 - \mathbf{x}_2\|) & \cdots & \phi_{\varepsilon}(\|\mathbf{x}_2 - \mathbf{x}_N\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{\varepsilon}(\|\mathbf{x}_N - \mathbf{x}_1\|) & \phi_{\varepsilon}(\|\mathbf{x}_N - \mathbf{x}_2\|) & \cdots & \phi_{\varepsilon}(\|\mathbf{x}_N - \mathbf{x}_N\|) \end{bmatrix}}$$

• Expand determinants using $\phi_{\varepsilon}(r) = a_0 + a_1 \varepsilon^2 r^2 + a_2 \varepsilon^4 r^4 + a_3 \varepsilon^6 r^6 + \cdots$

$$I_{X,\varepsilon}f(\mathbf{x}) = \frac{\varepsilon^{2p}\{\text{poly. in }\mathbf{x}\} + \varepsilon^{2(p+1)}\{\text{poly. in }\mathbf{x}\} + \cdots}{\varepsilon^{2q}\{\text{constant}\} + \varepsilon^{2(q+1)}\{\text{constant}\} + \cdots}$$

• In general (and always for GA) p = q so that the $\lim_{\varepsilon \to 0} s(\mathbf{x}, \varepsilon)$ exists.

Behavior of interpolants in the flat limit

• Expand determinants using $\phi_{\varepsilon}(r) = a_0 + a_1 \varepsilon^2 r^2 + a_2 \varepsilon^4 r^4 + a_3 \varepsilon^6 r^6 + \cdots$

$$I_{X,\varepsilon}f(\mathbf{x}) = \frac{\varepsilon^{2p}\{\text{poly. in }\mathbf{x}\} + \varepsilon^{2(p+1)}\{\text{poly. in }\mathbf{x}\} + \cdots}{\varepsilon^{2q}\{\text{constant}\} + \varepsilon^{2(q+1)}\{\text{constant}\} + \cdots}$$

- In general (and always for GA) p = q so that the $\lim_{\varepsilon \to 0} s(\mathbf{x}, \varepsilon)$ exists.
- Example values of 2p and 2q:

	d -		N - number of data points						
	dimension	2	3	5	10	20	50	100	200
Leading power of ϵ	1	2	6	20	90	380	2450	9900	39800
in $det(A)$ for both	2	2	4	12	40	130	570	1690	4940
numer. and denom.	3	2	4	10	30	90	360	980	2610

- High powers of ε indicate extreme ill-conditioning.
- Stable algorithms (better bases) are needed to reach the flat limit.

Uncertainty principle misconception

Schaback's uncertainty principle:

Principle: One cannot simultaneously achieve good conditioning and high accuracy.

Misconception: Accuracy that can be achieved is limited by ill-conditioning.

Restatement:

One cannot simultaneously achieve good conditioning and high accuracy when using the standard basis.

- It's a matter of base vs. space.
- Literature for interpolation with "flat" kernels is growing:

```
Stable Fornberg & Wright (2004)
Theory:
         Driscoll & Fornberg (2002)
                                                  algorithms: Fornberg & Piret (2007)
         Larsson & Fornberg (2003; 2005)
                                                              Fornberg, Larsson, & Flyer (2011)
         Fornberg, Wright, & Larsson (2004)
         Schaback (2005; 2008)
                                                              Fasshauer & McCourt (2011)
         Platte & Driscoll (2005)
                                                              Gonnet, Pachon, & Trefethen (2011)
                                                              Pazouki & Schaback (2011)
         Fornberg, Larsson, & Wright (2006)
                                                              De Marchi & Santin (2013)
         deBoor (2006)
                                                              Fornberg, Letho, Powell (2013)
         Fornberg & Zuev (2007)
                                                              Wright & Fornberg (2013)
         Lee, Yoon, & Yoon (2007)
         Fornberg & Piret (2008)
         Buhmann, Dinew, & Larsson (2010)
         Platte (2011)
         Song, Riddle, Fasshauer, & Hickernell (2011)
```

Better kernel bases for the sphere: RBF-QR algorithm

• Key idea behind the RBF-QR algorithm is to exploit the spherical harmonic expansion of the kernel:

$$\phi_{\varepsilon}(\|\mathbf{x} - \mathbf{y}\|) = \phi_{\varepsilon}(\sqrt{2 - 2\mathbf{x}^T\mathbf{y}}) = \psi_{\varepsilon}(\mathbf{x}^T\mathbf{y}) = \sum_{\ell=0}^{\infty} \hat{\psi}_{\varepsilon}(\ell) \sum_{m=-\ell}^{\ell} Y_{\ell}^m(\mathbf{x}) Y_{\ell}^m(\mathbf{y})$$

• And use the nice properties of the resulting spherical Fourier coefficients:

Name	Kernel $(r(t) = \sqrt{2-2t})$	Fourier coefficients $\hat{\psi}_{\varepsilon}(\ell)$ $(\varepsilon > 0)$
Gaussian	$\psi(t) = \exp(-(\varepsilon r(t))^2)$	$\varepsilon^{2\ell} \frac{4\pi^{3/2}}{\varepsilon^{2\ell+1}} e^{-2\varepsilon^2} I_{\ell+1/2}(2\varepsilon^2)$
IMQ	$\psi(t) = \frac{1}{\sqrt{1 + (\varepsilon r(t))^2}}$	$\varepsilon^{2\ell} \frac{4\pi}{(\ell+1/2)} \left(\frac{2}{1+\sqrt{4\varepsilon^2+1}}\right)^{2\ell+1}$
MQ	$\psi(t) = -\sqrt{1 + (\varepsilon r(t))^2}$	$\varepsilon^{2\ell} \frac{2\pi (2\varepsilon^2 + 1 + (\ell + 1/2)\sqrt{1 + 4\varepsilon^2})}{(\ell + 3/2)(\ell + 1/2)(\ell - 1/2)} \left(\frac{2}{1 + \sqrt{4\varepsilon^2 + 1}}\right)^{2\ell + 1}$

Note how the powers of ε appear in the coefficients.

• Can redefine the spherical harmonic expansion as:

$$\psi_{\varepsilon}(\mathbf{x}^T \mathbf{y}) = \sum_{\ell=0}^{\infty} \varepsilon^{2\ell} \widetilde{\psi}_{\varepsilon}(\ell) \sum_{m=-\ell}^{\ell} Y_{\ell}^m(\mathbf{x}) Y_{\ell}^m(\mathbf{y}) \quad (\widetilde{\psi}_{\varepsilon}(\ell) = \varepsilon^{-2\ell} \hat{\psi}(\ell))$$

• For $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$, we can write each basis function $\psi_{\varepsilon}(\mathbf{x}^T\mathbf{x}_j)$ as

$$\begin{split} \psi_{\varepsilon}(\mathbf{x}^{T}\mathbf{x}_{1}) = &\widetilde{\psi}_{\varepsilon}(0)Y_{0}^{0}(\mathbf{x}_{1})Y_{0}^{0}(\mathbf{x}) + \\ &\varepsilon^{2}\widetilde{\psi}_{\varepsilon}(1)\left\{Y_{1}^{-1}(\mathbf{x}_{1})Y_{1}^{-1}(\mathbf{x}) + Y_{1}^{0}(\mathbf{x}_{1})Y_{1}^{0}(\mathbf{x}) + Y_{1}^{1}(\mathbf{x}_{1})Y_{1}^{1}(\mathbf{x})\right\} + \\ &\varepsilon^{4}\widetilde{\psi}_{\varepsilon}(2)\left\{\dots\dots\right\} + \varepsilon^{6}\widetilde{\psi}_{\varepsilon}(3)\left\{\dots\dots\right\} + \varepsilon^{8}\widetilde{\psi}_{\varepsilon}(4)\left\{\dots\dots\right\} + \dots \\ \psi_{\varepsilon}(\mathbf{x}^{T}\mathbf{x}_{2}) = &\widetilde{\psi}_{\varepsilon}(0)Y_{0}^{0}(\mathbf{x}_{2})Y_{0}^{0}(\mathbf{x}) + \\ &\varepsilon^{2}\widetilde{\psi}_{\varepsilon}(1)\left\{Y_{1}^{-1}(\mathbf{x}_{2})Y_{1}^{-1}(\mathbf{x}) + Y_{1}^{0}(\mathbf{x}_{2})Y_{1}^{0}(\mathbf{x}) + Y_{1}^{1}(\mathbf{x}_{2})Y_{1}^{1}(\mathbf{x})\right\} + \\ &\varepsilon^{4}\widetilde{\psi}_{\varepsilon}(2)\left\{\dots\dots\right\} + \varepsilon^{6}\widetilde{\psi}_{\varepsilon}(3)\left\{\dots\dots\right\} + \varepsilon^{8}\widetilde{\psi}_{\varepsilon}(4)\left\{\dots\dots\right\} + \dots \\ \vdots \\ &\vdots \\ \psi_{\varepsilon}(\mathbf{x}^{T}\mathbf{x}_{N}) = &\widetilde{\psi}_{\varepsilon}(0)Y_{0}^{0}(\mathbf{x}_{N})Y_{0}^{0}(\mathbf{x}) + \\ &\varepsilon^{2}\widetilde{\psi}_{\varepsilon}(1)\left\{Y_{1}^{-1}(\mathbf{x}_{N})Y_{1}^{-1}(\mathbf{x}) + Y_{1}^{0}(\mathbf{x}_{N})Y_{1}^{0}(\mathbf{x}) + Y_{1}^{1}(\mathbf{x}_{N})Y_{1}^{1}(\mathbf{x})\right\} + \\ &\varepsilon^{4}\widetilde{\psi}_{\varepsilon}(2)\left\{\dots\dots\right\} + \varepsilon^{6}\widetilde{\psi}_{\varepsilon}(3)\left\{\dots\dots\right\} + \varepsilon^{8}\widetilde{\psi}_{\varepsilon}(4)\left\{\dots\dots\right\} + \dots \end{split}$$

• For simplicity we assume N is a perfect square $(N = n + 1)^2$.

• Or in matrix vector form as

$$\begin{bmatrix} \psi(\mathbf{x}^T \mathbf{x}_1) \\ \psi(\mathbf{x}^T \mathbf{x}_2) \\ \vdots \\ \psi(\mathbf{x}^T \mathbf{x}_N) \end{bmatrix} = BE \begin{bmatrix} Y_0^0(\mathbf{x}) \\ Y_1^{-1}(\mathbf{x}) \\ Y_1^0(\mathbf{x}) \\ Y_1^1(\mathbf{x}) \\ \vdots \end{bmatrix}$$

$$B = \begin{bmatrix} \widetilde{\psi}(0)Y_0^0(\mathbf{x}_1) & \widetilde{\psi}(1)Y_1^{-1}(\mathbf{x}_1) & \widetilde{\psi}(1)Y_1^0(\mathbf{x}_1) & \widetilde{\psi}(1)Y_1^1(\mathbf{x}_1) & \dots \\ \widetilde{\psi}(0)Y_0^0(\mathbf{x}_2) & \widetilde{\psi}(1)Y_1^{-1}(\mathbf{x}_2) & \widetilde{\psi}(1)Y_1^0(\mathbf{x}_2) & \widetilde{\psi}(1)Y_1^1(\mathbf{x}_2) & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \widetilde{\psi}(0)Y_0^0(\mathbf{x}_N) & \widetilde{\psi}(1)Y_1^{-1}(\mathbf{x}_N) & \widetilde{\psi}(1)Y_1^0(\mathbf{x}_N) & \widetilde{\psi}(1)Y_1^1(\mathbf{x}_N) & \dots \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & & & & & \\ & \varepsilon^2 & & & \\ & & \varepsilon^2 & & \\ & & & \varepsilon^2 & \\ & & & & \varepsilon^4 & \\ & & & & \ddots \end{bmatrix}$$

$$\begin{bmatrix} \psi(\mathbf{x}^T \mathbf{x}_1) \\ \psi(\mathbf{x}^T \mathbf{x}_2) \\ \vdots \\ \psi(\mathbf{x}^T \mathbf{x}_N) \end{bmatrix} = BE \begin{vmatrix} Y_0^0(\mathbf{x}) \\ Y_1^{-1}(\mathbf{x}) \\ Y_1^0(\mathbf{x}) \\ Y_1^1(\mathbf{x}) \\ \vdots \end{vmatrix} \iff \underline{\psi}(\mathbf{x}) = BE\underline{Y}$$

- We can't deal with infinite matrices so we truncate according to some tolerance (see Fornberg & Piret (2007)).
- Let $\mu > n$ be the truncation degree of the expansion.
- Partition the truncated matrices:

$$B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$$

where the columns of B_1 consist of spherical harmonics up to degree n and B_2 consist of spherical harmonics from degree n + 1 to μ .

$$E = \begin{bmatrix} E_1 & \\ & E_2 \end{bmatrix}$$

where E_1 is diagonal with blocks of powers of ε from 0 to 2n and where E_2 is diagonal with blocks of powers of ε from 2(n+1) to 2μ .

$$\begin{bmatrix} \psi(\mathbf{x}^T \mathbf{x}_1) \\ \psi(\mathbf{x}^T \mathbf{x}_2) \\ \vdots \\ \psi(\mathbf{x}^T \mathbf{x}_N) \end{bmatrix} = BE \begin{vmatrix} Y_0^{\sigma}(\mathbf{x}) \\ Y_1^{-1}(\mathbf{x}) \\ Y_1^{0}(\mathbf{x}) \\ Y_1^{1}(\mathbf{x}) \\ \vdots \\ Y^{\nu}(\mathbf{x}) \end{vmatrix} \iff \underline{\psi}(\mathbf{x}) = \begin{bmatrix} B_1 & B_2 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} \underline{Y}$$

• Now we change basis, by QR decomposition of $[B_1 \ B_2]$ and manipulations with E.

$$\underline{\psi}(\mathbf{x}) = QR \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} \underline{Y}$$

$$= Q \begin{bmatrix} R_1 & R_2 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} \underline{Y} \quad (R_1 \text{ is } N\text{-by-}N \text{ and upper triangular})$$

$$= QR_1 \begin{bmatrix} I & R_1^{-1}R_2 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} \underline{Y}$$

$$= QR_1E_1 \underbrace{\begin{bmatrix} I & E_1^{-1}R_1^{-1}R_2E_2 \end{bmatrix} \underline{Y}}$$

New stable basis

• All negative powers of ε in $E_1^{-1}R_1^{-1}R_2E_2$ analytically cancel after some matrix manipulations.

Numerical example

Target function:

$$f(\mathbf{x}) = \exp(-7(x + \frac{1}{2}^2) - 8(y + \frac{1}{2})^2 - 9(z - \frac{1}{\sqrt{2}})^2)$$

N = 1849 Minimal energy (ME) nodes

Remarks on RBF-QR

- RBF-QR allows one to stably compute "flat" kernel interpolants on the sphere.
- One can reach full numerical precision using this procedure (for smooth enough target functions and large enough N)
- It is more expensive than standard approach (RBF-Direct).
- Work has gone into extending this idea to general Euclidean space, but the procedure is much more complicated.
- Matlab Code for RBF-QR is given in Fornberg & Piret (2007) and is available in the rbfsphere package.

Concluding remarks

- This was general background material for getting started in this area.
- There is still much more to learn and many interesting problems:
 - Approximation (and decomposition) of vector fields.
 - Fast algorithms for interpolation using localized bases
 - Numerical integration
 - RBF generated finite differences
 - RBF partition of unity methods
 - Numerical solution of partial differential equations on spheres.
 - Generalizations to other manifolds.
- If you have any questions or want to chat about research ideas, please come and talk to me.