2014 Montestigliano Workshop

Radial Basis Functions for Scientific Computing

Grady B. Wright
Boise State University

"This work is supported by NSF grants DMS 0934581

2014 Montestigliano Workshop

Part I: Introduction Supplementary lecture slides

Grady B. Wright
Boise State University

‘This work is supported by NSF grants DMS 0934581

Overview

- Scattered data interpolation in \mathbb{R}^{d}
- Positive definite radial kernels: radial basis functions (RBF)
- Some theory
- Scattered data interpolation on the sphere \mathbb{S}^{2}
- Positive definite (PD) zonal kernels
- Brief review of spherical harmonics
- Characterization of PD zonal kernels
- Conditionally positive definite zonal kernels
- Examples
- Error estimates:
- Reproducing kernel Hilbert spaces
- Sobolev spaces
- Native spaces
- Geometric properties of node sets
- Optimal nodes on the sphere

Interpolation with kernels

- Let $\Omega \subset \mathbb{R}^{d}$ and $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N}$ a set of nodes on Ω.
- Consider a continuous target function $f: \Omega \rightarrow \mathbb{R}$ sampled at $X:\left.f\right|_{X}$.

Examples:

$$
\Omega=[-1,1]^{3}
$$

- Kernel interpolant to $\left.f\right|_{X}$:

$$
\Omega=\mathbb{S}^{2}
$$

$$
I_{X} f=\sum_{j=1}^{N} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)
$$

Interpolation with kernels

- Definition: Φ is a positive definite kernel on Ω if the matrix $A=\left\{\Phi\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\}$ is positive definite for any distinct $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \Omega$, i.e.

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \Phi\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) b_{j}>0, \text { provided }\left\{b_{i}\right\}_{i=1}^{N} \not \equiv 0
$$

- In this case c_{j} are uniquely determined by X and $\left.f\right|_{X}$.

Interpolation with kernels

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and $\left.f\right|_{X}$.

3 . The kernel interpolant should accurately reconstruct f.

Interpolation with kernels

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and $\left.f\right|_{X}$.

3 . The kernel interpolant should accurately reconstruct f.

- For problems like

$$
\Omega=[-1,1]^{3}
$$

Obvious choice: ϕ is a (conditionally) positive definite radial kernel

$$
\Phi\left(\mathbf{x}, \mathbf{x}_{j}\right)=\phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|_{2}\right)=\phi(r)
$$

- Leads to radial basis function (RBF) interpolation.

Radial basis function (RBF) interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)}$

$$
\text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
$$

Radial basis function (RBF) interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)}$

$$
\text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
$$

Radial basis function (RBF) interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)}$

$$
\text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
$$

Radial basis function (RBF) interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$$
\begin{aligned}
& \frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N} \\
& I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right) \\
& \quad \text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
\end{aligned}
$$

$$
X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \Omega,\left.\quad f\right|_{X}=\left\{f_{j}\right\}_{j=1}^{N}
$$

Radial basis function (RBF) interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$$
X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \Omega,\left.\quad f\right|_{X}=\left\{f_{j}\right\}_{j=1}^{N}
$$

$$
\begin{aligned}
& \frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)} \\
& \quad \text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
\end{aligned}
$$

Radial basis function (RBF) interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$$
X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \Omega,\left.\quad f\right|_{X}=\left\{f_{j}\right\}_{j=1}^{N}
$$

$$
\begin{aligned}
& \frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N} \\
& I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right) \\
& \quad \text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
\end{aligned}
$$

Radial basis function (RBF) interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\underline{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}$

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)
$$

Linear system for determining the interpolation coefficients

$$
\underbrace{\left[\begin{array}{ccc}
\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{N}\right\|\right) \\
\phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{N}\right\|\right) \\
\vdots & \vdots & \ddots \\
\phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{N}\right\|\right)
\end{array}\right]}_{A_{X}} \underbrace{\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]}_{\underline{c}}=\underbrace{\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]}_{\underline{f}} \quad \begin{aligned}
& A_{X} \text { is guaranteed to be } \\
& \text { positive definite if } \\
& \phi \text { is positive definite. }
\end{aligned}
$$

Positive definite radial kernels

- Some results on positive definite radial kernels.

Theorem. If $\phi \in C[0, \infty)$ with $\phi(0)>0$ and $\phi(\rho)<0$ for some $\rho>0$, then ϕ cannot be positive definite in \mathbb{R}^{d} for all d.

Positive definite radial kernels

- Some results on positive definite radial kernels.

Theorem. If $\phi \in C[0, \infty)$ with $\phi(0)>0$ and $\phi(\rho)<0$ for some $\rho>0$, then ϕ cannot be positive definite in \mathbb{R}^{d} for all d.

Proof

Consider X to be the vertices of an m dimensional simplex with spacing ρ, i.e. $X=\{\mathbf{x}\}_{j=1}^{m+1} \subset \mathbb{R}^{m}$

Then

$$
\begin{aligned}
\sum_{i=1}^{m+1} \sum_{j=1}^{m+1} \phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right) & =\sum_{i=1}^{m+1} \phi(0)+\sum_{i=1}^{m+1} \sum_{j=1, j \neq i}^{m+1} \phi(\rho) \\
& =(m+1)[\phi(0)+m \phi(\rho)]
\end{aligned}
$$

Given $\phi(0)>0$, we can find a ρ for which $\phi(\rho)<0$ and an m to make this sum zero.

Positive definite radial kernels

- Some results on positive definite radial kernels.

Definition. A function $\Phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be completely monotone on $[0, \infty)$ if
(1) $\Phi \in C[0, \infty)$,
(2) $\Phi \in C^{\infty}(0, \infty)$,
(3) $(-1)^{k} \Phi^{(k)}(t) \geq 0, t>0, k=0,1, \ldots$

Positive definite radial kernels

- Some results on positive definite radial kernels.

Definition. A function $\Phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be completely monotone on $[0, \infty)$ if
(1) $\Phi \in C[0, \infty)$,
(2) $\Phi \in C^{\infty}(0, \infty)$,
(3) $(-1)^{k} \Phi^{(k)}(t) \geq 0, t>0, k=0,1, \ldots$

Theorem (Hausdorff-Bernstien-Widder). A function Φ is completely monotone if and only if it can be written in the form

$$
\Phi(t)=\int_{0}^{\infty} e^{-s t} d \gamma(s)
$$

where $\gamma(s)$ is bounded, non-decreasing, and not concentrated at zero.

Positive definite radial kernels

- Some results on positive definite radial kernels.

Definition. A function $\Phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be completely monotone on $[0, \infty)$ if
(1) $\Phi \in C[0, \infty)$,
(2) $\Phi \in C^{\infty}(0, \infty)$,
(3) $(-1)^{k} \Phi^{(k)}(t) \geq 0, t>0, k=0,1, \ldots$

Theorem (Hausdorff-Bernstien-Widder). A function Φ is completely monotone if and only if it can be written in the form

$$
\Phi(t)=\int_{0}^{\infty} e^{-s t} d \gamma(s)
$$

where $\gamma(s)$ is bounded, non-decreasing, and not concentrated at zero.
Theorem (Schoenberg 1938). Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be a radial kernel and $\Phi(r)=\phi(\sqrt{r})$. Then ϕ is positive definite on \mathbb{R}^{d}, for all d, if and only if Φ is completely monotone on $[0, \infty)$ and not constant.

Proof: Use Bernstein-Hausdorff-Widder result and the fact the Gaussian is positive definite.

Positive definite radial kernels

- Some results on positive definite radial kernels.

Theorem (Schoenberg 1938). Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be a radial kernel and $\Phi(r)=\phi(\sqrt{r})$. Then ϕ is positive definite on \mathbb{R}^{d}, for all d, if and only if Φ is completely monotone on $[0, \infty)$ and not constant.

Examples:

Here ε is called the shape parameter (more on this later).

Positive definite radial kernels

- Results on dimensions specific positive definite radial kernels:

Theorem (General kernel). Let ϕ be a continuous kernel in $L_{1}\left(\mathbb{R}^{d}\right)$. Then ϕ is positive definite if and only if ϕ is bounded and its d-dimensional Fourier transform $\hat{\phi}(\boldsymbol{\omega})$ is non-negative and not identically equal to zero.

Remark: Related to Bochner's theorem (1933). Theorem and proof can be found in Wendland (2005).

- To make the result specific to radial kernels, we apply the d-dimensional Fourier transform and use radial symmetry to get (Hankel transform):

$$
\hat{\phi}(\boldsymbol{\omega})=\hat{\phi}\left(\|\boldsymbol{\omega}\|_{2}\right)=\frac{1}{\|\boldsymbol{\omega}\|_{2}^{\nu}} \int_{0}^{\infty} \phi(t) t^{d / 2+1} J_{\nu}\left(\|\boldsymbol{\omega}\|_{2} t\right) d t
$$

where $\nu=d / 2-1$ and J_{ν} is the J-Bessel function of order ν.

- Note that if ϕ is positive definite on \mathbb{R}^{d} then it is positive definite on \mathbb{R}^{k} for any $k \leq d$.

Positive definite radial kernels

- Examples

Finite-

Maternoothness
$(\varepsilon r)^{\nu-d / 2} K_{\nu-d / 2}(\varepsilon r)$
PD for $2 \nu>d$
$\mathrm{Ex}: e^{-r}\left(r^{2}+3 r+3\right)$

Truncated powers

$$
(1-\varepsilon r)_{+}^{\ell}
$$

PD for $\ell \geq\lfloor d / 2\rfloor+1$

Wendland (1995) $(1-\varepsilon r)_{+}^{k} p_{d, k}(\varepsilon r)$ $p_{d, k}$ is a polynomial whose degree depends on d and k.

Ex: $(1-\varepsilon r)_{+}^{4}(4 \varepsilon r+1)$

Infinite-smoothness

J-Bessel

$$
\frac{J_{d / 2-1}(\varepsilon r)}{(\varepsilon r)^{d / 2}}
$$

$\operatorname{Ex}(d=3): \frac{\sin (\varepsilon r)}{\varepsilon r}$

Platte
$(\varphi * \varphi)(r)$
φ is a $C^{\infty}(\mathbb{R})$ compactly supported radial function.

PD dimension depends
 on convolution dimension.

Conditionally positive definite kernels

- Discussion thus far does not cover many important radial kernels:

Cubic

$$
\phi(r)=r^{3}
$$

Cubic spline in 1-D

Thin plate spline

$\phi(r)=r^{2} \log r$
Generalization of energy minimizing spline in 2D

Multiquadric

Popular kernel and first used in any RBF application; Hardy 1971

- These can covered under the theory of conditionally positive definite kernels.
- CPD kernels can be characterized similar to PD kernels but, using generalized Fourier transforms. We will not take this approach; see Ch. 8 Wendland 2005 for details.

Conditionally positive definite kernels

Definition. A continuous kernel $\phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{R}^{d} if, for any distinct $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$, and all $\mathbf{b} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\}$ satisfying

$$
\sum_{j=1}^{N} b_{j} p\left(\mathbf{x}_{j}\right)=0
$$

for all d-variate polynomials of degree $<k$, the following is satisfied:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right) b_{j}>0
$$

Conditionally positive definite kernels

Definition. A continuous kernel $\phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{R}^{d} if, for any distinct $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$, and all $\mathbf{b} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\}$ satisfying

$$
\sum_{j=1}^{N} b_{j} p\left(\mathbf{x}_{j}\right)=0
$$

for all d-variate polynomials of degree $<k$, the following is satisfied:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right) b_{j}>0
$$

- Alternatively, ϕ is positive definite on the subspace $V_{k-1} \subset \mathbb{R}^{N}$:

$$
V_{k-1}=\left\{\mathbf{b} \in \mathbb{R}^{N} \mid \sum_{j=1}^{N} b_{j} p\left(\mathbf{x}_{j}\right)=0 \text { for all } p \in \Pi_{k-1}\left(\mathbb{R}^{d}\right)\right\}
$$

where $\Pi_{m}\left(\mathbb{R}^{d}\right)$ is the space of all d-variate polynomials of degree $\leq m$.

- The case $k=0$, corresponds to standard positive definite kernels on \mathbb{R}^{d}.

Conditionally positive definite kernels

Definition. A continuous kernel $\Phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be completely monotone of order k on $(0, \infty)$ if $(-1)^{k} \Phi^{(k)}$ is completely monotone on $(0, \infty)$.

Examples:

$$
\frac{k=1}{\Phi(t)=\sqrt{t} \quad \Phi(t)=\sqrt{1+t}} \quad \begin{aligned}
& \Phi(t)=t^{3 / 2} \quad \Phi(t)=\frac{1}{2} t \log t
\end{aligned}
$$

Conditionally positive definite kernels

Definition. A continuous kernel $\Phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be completely monotone of order k on $(0, \infty)$ if $(-1)^{k} \Phi^{(k)}$ is completely monotone on $(0, \infty)$.

Examples:

$$
k=1
$$

$$
\Phi(t)=\sqrt{t} \quad \Phi(t)=\sqrt{1+t} \quad \Phi(t)=t^{3 / 2} \quad \Phi(t)=\frac{1}{2} t \log t
$$

Theorem (Micchelli (1986); Guo, Hu, \& Sun (1993)). The radial kernel $\phi:[0, \infty)$ is conditionally positive definite on \mathbb{R}^{d}, for all d, if and only if $\Phi=\phi(\sqrt{ } \cdot)$ is completely monotone of order k on $(0, \infty)$ and $\Phi^{(k)}$ is not constant.

Remark:

- This is one of the BIG theorems that launched the RBF field.
- It says, for example, that linear, cubic, thin-plate splines, and the multiquadric are conditionally positive definite on \mathbb{R}^{d} for any d.
- Next, its consequences on RBF interpolation of scattered data...

Conditionally positive definite kernels

Definition. Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{n}$ be a basis for $\Pi_{k-1}\left(\mathbb{R}^{d}\right)(k>1)$. The general RBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{\ell=1}^{n} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, n$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\frac{f}{\underline{0}} \\
\underline{\underline{~}}
\end{array}\right] \text {, where } a_{i, j}=\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right), p_{i, \ell}=p_{k}\left(\mathbf{x}_{i}\right)
$$

Conditionally positive definite kernels

Definition. Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{n}$ be a basis for $\Pi_{k-1}\left(\mathbb{R}^{d}\right)(k>1)$. The general RBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{\ell=1}^{n} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, n$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\frac{f}{\underline{0}} \\
\underline{\underline{~}}
\end{array}\right] \text {, where } a_{i, j}=\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right), p_{i, \ell}=p_{k}\left(\mathbf{x}_{i}\right)
$$

Theorem (Micchelli (1986)). The above linear system is invertible for any distinct X, provided

- $\operatorname{rank}(P)=n$ (i.e. X is unisolvent on $\Pi_{k-1}\left(\mathbb{R}^{d}\right)$),
- $\Phi=\phi(\sqrt{ })$ is completely monotone of order k on $(0, \infty)$,
- $\Phi^{(k)}$ is not constant.

Conditionally positive definite kernels

Definition. Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{n}$ be a basis for $\Pi_{k-1}\left(\mathbb{R}^{d}\right)(k>1)$. The general RBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{\ell=1}^{n} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, n$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\underline{f} \\
\underline{0}
\end{array}\right] \text {, where } a_{i, j}=\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right), p_{i, \ell}=p_{k}\left(\mathbf{x}_{i}\right)
$$

Example (Thin plate spline, \mathbb{R}^{2}). Let

- $\phi(r)=r^{2} \log (r)$
- $p_{1}(x, y)=1, p_{2}(x, y)=x$, and $p_{3}(x, y)=y$.

The system has a unique solution provided the nodes are not collinear.

Conditionally positive definite kernels

Theorem (Micchelli (1986)). Suppose $\Phi=\phi(\sqrt{ })$ is completely monotone of order 1 on $(0, \infty)$ and Φ^{\prime} is not constant. Then for any distinct set of nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$, and any d, the matrix A with entries $a_{i, j}=$ $\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right), i, j=1, \ldots, N$, has $N-1$ positive eigenvalues and 1 negative eigenvalue. Hence it is invertible.

Remark:

- This theorem means that for kernels like the popular multiquadric $\phi(r)=\sqrt{1+(\varepsilon r)^{2}}$ the basic RBF interpolant

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)
$$

has a unique solution for any distinct set of nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$ and sampled target function f on X.

- Augmenting the RBF interpolant with polynomials is not necessary to guarantee uniqueness for order 1 CPD kernels.
- This theorem answered a conjecture from Franke (1983) regarding the multiquadric.

Radial basis function (RBF) interpolation

- Many good books to consult further on RBF theory and applications:

2014: SIAM

A Primer on
Radial Basis
Functions with
Applications to
the Geosciences
Bengt Fornberg
Natasha Flyer

Interpolation with kernels (revisited)

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and $\left.f\right|_{X}$.
3. The kernel interpolant should accurately reconstruct f.

- For problems like

$$
\Omega=[-1,1]^{3}
$$

Obvious choice: ϕ is a (conditionally) positive definite radial kernel

$$
\Phi\left(\mathbf{x}, \mathbf{x}_{j}\right)=\phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|_{2}\right)=\phi(r)
$$

- Leads to radial basis function (RBF) interpolation.

Interpolation with kernels on the sphere

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and $\left.f\right|_{X}$.
3. The kernel interpolant should accurately reconstruct f.

- For problems like

Obvious(?) choice: Φ is a (conditionally) positive definite zonal kernel:

$$
\Phi\left(\mathbf{x}, \mathbf{x}_{j}\right)=\psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)=\psi(t), t \in[-1,1]
$$

- Analog of RBF interpolation for the sphere: SBF interpolation.

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

$\underline{\text { Basic SBF Interpolant for } \mathbb{S}^{2}}$

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)
$$

$$
X=\left\{x_{j}\right\}_{j=1}^{N} \subset \Omega,\left.\quad f\right|_{X}=\left\{f_{j}\right\}_{j=1}^{N}
$$

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$
Linear system for determining the interpolation coefficients
$\underbrace{\left[\begin{array}{cccc}\psi\left(\mathbf{x}_{1}^{T} \mathbf{x}_{1}\right) & \psi\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right) \cdots \psi\left(\mathbf{x}_{1}^{T} \mathbf{x}_{N}\right) \\ \psi\left(\mathbf{x}_{2}^{T} \mathbf{x}_{1}\right) & \psi\left(\mathbf{x}_{2}^{T} \mathbf{x}_{2}\right) \cdots \psi\left(\mathbf{x}_{2}^{T} \mathbf{x}_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \psi\left(\mathbf{x}_{N}^{T} \mathbf{x}_{1}\right) & \psi\left(\mathbf{x}_{N}^{T} \mathbf{x}_{2}\right) \cdots \psi\left(\mathbf{x}_{N}^{T} \mathbf{x}_{N}\right)\end{array}\right]}_{A_{X}} \underbrace{\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{N}\end{array}\right]}_{\underline{c}}=\underbrace{\left[\begin{array}{c}f_{1} \\ f_{2} \\ \vdots \\ f_{N}\end{array}\right]}_{\underline{f}} \begin{aligned} & A_{X} \text { is guaranteed to be positive } \\ & \text { definite if } \psi \text { is a positive definite } \\ & \text { zonal kernel }\end{aligned}$

Positive definite zonal kernels

Definition. A kernel $\Psi: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y})=\psi\left(\mathbf{x}^{T} \mathbf{y}\right)$, where $\psi:[-1,1] \rightarrow \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ.

Positive definite zonal kernels

Definition. A kernel $\Psi: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y})=\psi\left(\mathbf{x}^{T} \mathbf{y}\right)$, where $\psi:[-1,1] \rightarrow \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ.

Definition. A zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{d-1} if for any distinct set of nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{d-1}$ and $\underline{b} \in \mathbb{R}^{N} \backslash\{0\}$ the matrix $A=\left\{\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)\right\}$ is positive definite, i.e.

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) b_{j}>0
$$

Remark: PD zonal kernels are sometimes called spherical basis functions (SBFs).

Positive definite zonal kernels

Definition. A kernel $\Psi: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y})=\psi\left(\mathbf{x}^{T} \mathbf{y}\right)$, where $\psi:[-1,1] \rightarrow \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ.

Definition. A zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{d-1} if for any distinct set of nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{d-1}$ and $\underline{b} \in \mathbb{R}^{N} \backslash\{0\}$ the matrix $A=\left\{\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)\right\}$ is positive definite, i.e.

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) b_{j}>0
$$

Remark: PD zonal kernels are sometimes called spherical basis functions (SBFs).

- The study of positive definite kernels on \mathbb{S}^{d-1} started with Schoenberg (1940).
- Extension of this work, including to conditionally positive definite kernels, began in the 1990s (Cheney and Xu (1992)), and continues today.
- Our interest is strictly in \mathbb{S}^{2} and we will only present results for this case.

Positive definite zonal kernels

- Any positive definite radial kernel ϕ on \mathbb{R}^{3} is also positive definite on \mathbb{S}^{2}.
- In fact, they are positive definite zonal kernels, since for $\mathbf{x}, \mathbf{y} \in \mathbb{S}^{2}$

$$
\phi(\|\mathbf{x}-\mathbf{y}\|)=\phi\left(\sqrt{2-2 \mathbf{x}^{T} \mathbf{y}}\right)=\psi\left(\mathbf{x}^{T} \mathbf{y}\right)
$$

- So, standard RBF methods can be used for problems on the sphere \mathbb{S}^{2}.
- Cheney (1995) appears to have been the first to mathematically study the specialization of RBFs to the sphere.
- Many others have followed suit, e.g.

Fasshauer \& Schumaker (1998); Baxter \& Hubbert (2001); Levesley \& Hubbert (2001); Hubbert \& Morton (2004); zu Castel \& Filbir (2005); Narcowich, Sun, \& Ward (2007); Narcowich, Sun, Ward, \& Wendland (2007); Fornberg \& Piret (2007); Narcowich, Ward, \& W (2007); Fuselier, Narcowich, Ward, \& W (2009); Fuselier \& W (2009)

Positive definite zonal kernels

- Any positive definite radial kernel ϕ on \mathbb{R}^{3} is also positive definite on \mathbb{S}^{2}.
- In fact, they are positive definite zonal kernels, since for $\mathbf{x}, \mathbf{y} \in \mathbb{S}^{2}$

$$
\phi(\|\mathbf{x}-\mathbf{y}\|)=\phi\left(\sqrt{2-2 \mathbf{x}^{T} \mathbf{y}}\right)=\psi\left(\mathbf{x}^{T} \mathbf{y}\right)
$$

- So, standard RBF methods can be used for problems on the sphere \mathbb{S}^{2}.
- Cheney (1995) appears to have been the first to mathematically study the specialization of RBFs to the sphere.
- Many others have followed suit, e.g.

Fasshauer \& Schumaker (1998); Baxter \& Hubbert (2001); Levesley \& Hubbert (2001); Hubbert \& Morton (2004); zu Castel \& Filbir (2005); Narcowich, Sun, \& Ward (2007); Narcowich, Sun, Ward, \& Wendland (2007); Fornberg \& Piret (2007); Narcowich, Ward, \& W (2007); Fuselier, Narcowich, Ward, \& W (2009); Fuselier \& W (2009)

- Open question: Are there any advantages to using a purely PD zonal kernel to a restricted PD radial kernel? (Baxter \& Hubbert (2001))
- Personally, I have always used restricted radial kernels.

Positive definite zonal kernels

- Some references for the material to come:

- A good understanding of functions on the sphere requires one to be wellversed in spherical harmonics.
- Spherical harmonics are the analog of 1-D Fourier series for approximation on spheres of dimension 2 and higher.
- Several ways to introduce spherical harmonics (Freeden \& Schreiner 2008)
- We will use the eigenfunction approach and restrict our attention to the 2sphere.
- Following this we review some important results about spherical harmonics.

Overview of spherical harmonics

- Laplacian in spherical coordinates ($x=r \cos \theta \cos \varphi, y=r \cos \theta \sin \varphi, z=r \sin \theta$)

$$
\Delta=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \underbrace{\left\{\frac{\partial^{2}}{\partial \theta^{2}}-\tan \theta \frac{\partial}{\partial \theta}+\frac{1}{\cos ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right\}}_{\Delta_{s}=\text { Laplace-Beltrami operator }}
$$

Overview of spherical harmonics

- Laplacian in spherical coordinates $(x=r \cos \theta \cos \varphi, y=r \cos \theta \sin \varphi, z=r \sin \theta)$

$$
\Delta=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \underbrace{\left\{\frac{\partial^{2}}{\partial \theta^{2}}-\tan \theta \frac{\partial}{\partial \theta}+\frac{1}{\cos ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right\}}_{\Delta_{s}=\text { Laplace-Beltrami operator }}
$$

- Spherical harmonics: Set of all functions bounded at $\theta= \pm \frac{\pi}{2}$ or $z= \pm 1$ such that $\Delta_{s} Y=\lambda Y$.
- Solve using separation of variables to arrive at:

$$
Y_{\ell}^{m}(\theta, \varphi)=a_{\ell}^{|m|} P_{\ell}^{|m|}(\cos \theta) e^{i m \varphi}, \ell=0,1, \ldots, \quad m=-\ell,-\ell+1, \ldots, \ell-1, \ell .
$$

- Here P_{ℓ}^{k}, for $k=0,1, \ldots, \ell=k, k+1, \ldots$, are the Associated Legendre functions, given by Rodrigues' formula

$$
P_{\ell}^{k}(z)=\left(1-z^{2}\right)^{k / 2} \frac{d^{k}}{d z^{k}}\left(P_{\ell}(z)\right),
$$

where P_{ℓ} is the standard Legendre polynomial of degree ℓ.

- The a_{ℓ}^{k} are normalization factors (e.g. $\left.a_{\ell}^{k}=\sqrt{((2 \ell+1)(\ell-k)!) /(4 \pi(\ell+m)!}\right)$

Overview of spherical harmonics

- Each spherical harmonic satisfies $\Delta_{s} Y_{\ell}^{m}=-\ell(\ell+1) Y_{\ell}^{m}$.
- For each $\ell=0,1, \ldots$, there are $2 \ell+1$ harmonics with eigenvalue $-\ell(\ell+1)$.

Overview of spherical harmonics

- Each spherical harmonic satisfies $\Delta_{s} Y_{\ell}^{m}=-\ell(\ell+1) Y_{\ell}^{m}$.
- For each $\ell=0,1, \ldots$, there are $2 \ell+1$ harmonics with eigenvalue $-\ell(\ell+1)$.
- Real-form of spherical harmonics:

$$
Y_{\ell}^{m}(\theta, \varphi)=Y_{\ell}^{m}(z, \varphi)= \begin{cases}\sqrt{2} a_{\ell}^{m} P_{\ell}^{m}(z) \cos (m \varphi) & m>0 \\ a_{\ell}^{0} P_{\ell}(z) & m=0 \\ \sqrt{2} a_{\ell}^{|m|} P_{\ell}^{|m|}(z) \sin (m \varphi) & m<0\end{cases}
$$

Overview of spherical harmonics

- Each spherical harmonic satisfies $\Delta_{s} Y_{\ell}^{m}=-\ell(\ell+1) Y_{\ell}^{m}$.
- For each $\ell=0,1, \ldots$, there are $2 \ell+1$ harmonics with eigenvalue $-\ell(\ell+1)$.
- Real-form of spherical harmonics:

$$
Y_{\ell}^{m}(\theta, \varphi)=Y_{\ell}^{m}(z, \varphi)= \begin{cases}\sqrt{2} a_{\ell}^{m} P_{\ell}^{m}(z) \cos (m \varphi) & m>0 \\ a_{\ell}^{0} P_{\ell}(z) & m=0 \\ \sqrt{2} a_{\ell}^{|m|} P_{\ell}^{|m|}(z) \sin (m \varphi) & m<0\end{cases}
$$

- Can also be expressed purely in Cartesian coordinates $\left(\mathbf{x}=(x, y, z) \in \mathbb{S}^{2}\right)$:
$Y_{\ell}^{m}(\mathbf{x})=Y_{\ell}^{m}(x, y, z)= \begin{cases}\sqrt{2} a_{\ell}^{m} Q_{\ell}^{m}(z) \frac{1}{2}\left((x+i y)^{m}+(x-i y)^{m}\right) & m>0, \\ a_{\ell}^{0} P_{\ell}(z) & m=0, \\ \sqrt{2} a_{\ell}^{|m|} Q_{\ell}^{|m|}(z) \frac{1}{2 i}\left((x+i y)^{-m}-(x-i y)^{-m}\right) & m<0 .\end{cases}$
where $Q_{\ell}^{m}(z)=(-1)^{m} \frac{\partial^{m}}{\partial z^{m}} P_{\ell}(z)$.
- We will sometimes switch notation from $Y_{\ell}^{m}(\theta, \varphi)$ to $Y_{\ell}^{m}(\mathbf{x})$.

Overview of spherical harmonics

- Spherical harmonics $Y_{\ell}^{m}(\mathbf{x})$ in Cartesian form, for $\ell=0,1,2,3$.

Overview of spherical harmonics

$Y_{\ell}^{m}(\mathbf{x}) \mid m=-4 \quad m=-3 \quad m=-2 \quad m=-1 \quad m=0 \quad m=1 \quad m=2 \quad m=3 \quad m=4$
$\ell=1$
$\ell=2$
$\ell=3$
$\ell=4$

Overview of spherical harmonics

- Spherical harmonics satisfy the $L_{2}\left(\mathbb{S}^{2}\right)$ orthogonality condition:

$$
\int_{\mathbb{S}^{2}} Y_{\ell}^{m}(\mathbf{x}) Y_{k}^{n}(\mathbf{x}) d \mu(\mathbf{x})=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\pi}^{\pi} Y_{\ell}^{m}(\theta, \varphi) Y_{k}^{n}(\theta, \varphi) \cos \theta d \varphi d \theta=\delta_{k \ell} \delta_{m n}
$$

- They form a complete orthonormal basis for $L_{2}\left(\mathbb{S}^{2}\right)$.
- If $f \in L_{2}\left(\mathbb{S}^{2}\right)$ then

$$
f(\mathbf{x})=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \hat{f}_{\ell}^{m} Y_{\ell}^{m}(\mathbf{x}), \text { where } \hat{f}_{\ell}^{m}=\int_{\mathbb{S}^{2}} f(\mathbf{x}) Y_{\ell}^{m}(\mathbf{x}) d \mu(\mathbf{x}) .
$$

- There is no counter part to the fast Fourier transform (FFT) for computing the spherical harmonic coefficients \hat{f}_{ℓ}^{m}.
- Fast methods of similar complexity $(\mathcal{O}(N \log N))$ have been developed, but have very large constants associated with them. So an actual computational advantage does not occur until N is extremely large.

Overview of spherical harmonics

- Two useful results on spherical harmonics we will use:
- Addition theorem: Let $\mathbf{x}, \mathbf{y} \in \mathbb{S}^{2}$, then for $\ell=0,1, \ldots$

$$
\frac{4 \pi}{2 \ell+1} \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\mathbf{x}) Y_{\ell}^{m}(\mathbf{y})=P_{\ell}\left(\mathbf{x}^{T} \mathbf{y}\right)
$$

where P_{ℓ} is the standard Legendre polynomial of degree ℓ.

- Funk-Hecke formula: Let $f \in L_{1}(-1,1)$ and have the Legendre expansion

$$
f(t)=\sum_{k=0}^{\infty} a_{k} P_{k}(t), \text { where } a_{k}=\frac{2 k+1}{2} \int_{-1}^{1} f(t) P_{k}(t) d t .
$$

Then for any spherical harmonic Y_{ℓ}^{m} the following holds:

$$
\int_{\mathbb{S}^{2}} f(\mathbf{x} \cdot \mathbf{y}) Y_{\ell}^{m}(\mathbf{x}) d \mu(\mathbf{x})=\frac{4 \pi a_{\ell}}{2 \ell+1} Y_{\ell}^{m}(\mathbf{y})
$$

Theorems for positive definite zonal kernels sumomemem

Definition. A zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{2} if for any distinct set of nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$ and $\underline{b} \in \mathbb{R}^{N} \backslash\{0\}$ the matrix $A=\left\{\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)\right\}$ is positive definite, i.e.

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) b_{j}>0
$$

Theorem (Schoenberg (1942)). If a zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is expressible in a Legendre series as

$$
\psi(t)=\sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(t)
$$

where $a_{\ell}>0$ for $\ell \geq 0$ and $\sum_{\ell=0}^{\infty} a_{\ell}<\infty$ then ψ is a positive definite zonal kernel on \mathbb{S}^{2}.

Theorems for positive definite zonal kernels sumomenamy

Theorem (Schoenberg (1942)). If a zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is expressible in a Legendre series as

$$
\psi(t)=\sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(t)
$$

where $a_{\ell}>0$ for $\ell \geq 0$ and $\sum_{\ell=0}^{\infty} a_{\ell}<\infty$ then ψ is a positive definite zonal kernel on \mathbb{S}^{2}.

Proof:

1. The condition $\sum_{\ell=0}^{\infty} a_{\ell}<\infty$ guarantees that $\psi \in C\left(\mathbb{S}^{2}\right)$.
2. Use the addition theorem: Let $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$ and $\underline{b} \in \mathbb{R}^{N} \backslash\{0\}$ then

$$
\begin{aligned}
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) b_{j} & =\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} b_{j} \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
& =\sum_{\ell=0}^{\infty} \frac{4 \pi a_{\ell}}{2 \ell+1} \sum_{m=-\ell}^{\ell} \sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} b_{j} Y_{\ell}^{m}\left(\mathbf{x}_{i}\right) Y_{\ell}^{m}\left(\mathbf{x}_{j}\right) \\
& =\sum_{\ell=0}^{\infty} \frac{4 \pi a_{\ell}}{2 \ell+1} \sum_{m=-\ell}^{\ell}\left|\sum_{j=1}^{N} b_{j} Y_{\ell}^{m}\left(\mathbf{x}_{j}\right)\right|^{2} \geq 0
\end{aligned}
$$

3. Show that the quadratic form must be strictly positive.

Theorems for positive definite zonal kernels sumomenamy

Theorem (Schoenberg (1942)). If a zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is expressible in a Legendre series as

$$
\psi(t)=\sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(t)
$$

where $a_{\ell}>0$ for $\ell \geq 0$ and $\sum_{\ell=0}^{\infty} a_{\ell}<\infty$ then ψ is a positive definite zonal kernel on \mathbb{S}^{2}.

- Necessary and sufficient conditions on the Legendre coefficients a_{ℓ} were only given in 2003 by Chen, Menegatto, \& Sun.
- Their result says the set $\left\{\ell \in \mathbb{N}_{0} \mid a_{\ell}>0\right\}$ must contain infinitely many odd and infinitely many even integers.

Conditionally positive definite zonal kernels

- Similar to \mathbb{R}^{d}, we can define conditionally positive definite zonal kernels.

Definition. A continuous zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{S}^{2} if, for any distinct $X=$ $\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, and all $\mathbf{b} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\}$ satisfying

$$
\sum_{j=1}^{N} b_{j} p\left(\mathbf{x}_{j}\right)=0
$$

for all spherical harmonics of degree $<k$, the following is satisfied:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) b_{j}>0
$$

Theorem. If the Legendre expansion coefficients of $\psi:[-1,1] \rightarrow \mathbb{R}$ satisfy $a_{\ell}>0$ for $\ell \geq k$ and $\sum_{\ell=0}^{\infty} a_{\ell}<\infty$.

Proof: Use same ideas as the positive definite case.

Conditionally positive definite zonal kernels

Definition. Let $\psi:[-1,1] \rightarrow \mathbb{R}$ be a continuous zonal kernel and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{k^{2}}$ be a basis for the space of all spherical harmonics of degree $k-1$. The general SBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)+\sum_{\ell=1}^{k^{2}} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, k^{2}$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\underline{f} \\
\underline{0}
\end{array}\right], \text { where } a_{i, j}=\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right), p_{i, \ell}=p_{\ell}\left(\mathbf{x}_{i}\right)
$$

Theorem. The above linear system is invertible for any distinct X, provided

- $\operatorname{rank}(P)=k^{2}$,
- ψ is conditionally positive definite of of order k.

Conditionally positive definite zonal kernels

Definition. Let $\psi:[-1,1] \rightarrow \mathbb{R}$ be a continuous zonal kernel and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{k^{2}}$ be a basis for the space of all spherical harmonics of degree $k-1$. The general SBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)+\sum_{\ell=1}^{k^{2}} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, k^{2}$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\frac{f}{\underline{0}}
\end{array}\right], \text { where } a_{i, j}=\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right), p_{i, \ell}=p_{\ell}\left(\mathbf{x}_{i}\right)
$$

Example (Restricted thin plate spline, or surface spline). Let

- $\psi(t)=(1-t) \log (2-2 t)$
- $p_{1}(\mathbf{x})=1, p_{2}(\mathbf{x})=x, p_{3}(\mathbf{x})=y$, and $p_{4}(\mathbf{x})=z$.

The system has a unique solution provided X are distinct.

- More useful to work with a zonal kernels spherical Fourier coefficients $\hat{\psi}_{\ell}$. These are related to Legendre coefficients through the Funk-Hecke formula:

$$
\psi\left(\mathbf{x}^{T} \mathbf{y}\right)=\sum_{\ell=0}^{\infty} \hat{\psi}(\ell) \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\mathbf{x}) Y_{\ell}^{m}(\mathbf{y}) \Longrightarrow \hat{\psi}(\ell):=\frac{4 \pi a_{\ell}}{2 \ell+1}
$$

- Error estimates for SBF interpolants are governed by the asymptotic decay of $\hat{\psi}_{\ell}$.
- Stable algorithms (RBF-QR) also work with $\hat{\psi}_{\ell}$ (more on this later...)
- Baxter \& Hubbert (2001) computed $\hat{\psi}_{\ell}$ for many standard RBFs restricted to \mathbb{S}^{2}.
- zu Castell \& Filbir (2005) and Narcowich, Sun, \& Ward (2007) linked the spherical Fourier coefficients of restricted RBFs to the standard Fourier coefficients in \mathbb{R}^{3} :

$$
\hat{\psi}_{\ell}=\int_{0}^{\infty} u \hat{\phi}(u) J_{\ell+1 / 2}(u) d u
$$

where $\hat{\phi}$ is the Hankel transform of the RBF in \mathbb{R}^{3}.

Exannoles of positive definite zonal kernels

- Examples of positive definite (PD) and order k conditionally positive definite $(\mathrm{CPD}(k))$ zonal kernels with their spherical Fourier coefficients.

Name	Kernel $(r(t)=\sqrt{2-2 t})$	Fourier coefficients $\hat{\psi}_{\ell}(0<h<1, \varepsilon>0)$	Type
Legendre	$\psi(t)=\left(1+h^{2}-2 h t\right)^{-1 / 2}$	$\hat{\psi}_{\ell}=\frac{2 \pi h^{\ell}}{\ell+1 / 2}$	PD
Poisson	$\psi(t)=\left(1-h^{2}\right)\left(1+h^{2}-2 h t\right)^{-3 / 2}$	$\hat{\psi}_{\ell}=4 \pi h^{\ell}$	PD
Spherical	$\psi(t)=1-r(t)+\frac{(r(t))^{2}}{2} \log \left(\frac{r(t)+2}{r(t)}\right)$	$\hat{\psi}_{\ell}=\frac{2 \pi}{(\ell+1 / 2)(\ell+1)(\ell+2)}$	PD
Gaussian	$\psi(t)=\exp \left(-(\varepsilon r(t))^{2}\right)$	$\varepsilon^{2 \ell} \frac{4 \pi^{3 / 2}}{\varepsilon^{2 \ell+1}} e^{-2 \varepsilon^{2}} I_{\ell+1 / 2}\left(2 \varepsilon^{2}\right)$	PD
IMQ	$\psi(t)=\frac{1}{\sqrt{\left.1+(\varepsilon r(t))^{2}\right)}}$	$\varepsilon^{2 \ell} \frac{4 \pi}{(\ell+1 / 2)}\left(\frac{2}{1+\sqrt{4 \varepsilon^{2}+1}}\right)^{2 \ell+1}$	PD
MQ	$\psi(t)=-\sqrt{\left.1+(\varepsilon r(t))^{2}\right)}$	$\varepsilon^{2 \ell} \frac{2 \pi\left(2 \varepsilon^{2}+1+(\ell+1 / 2) \sqrt{1+4 \varepsilon^{2}}\right)}{(\ell+3 / 2)(\ell+1 / 2)(\ell-1 / 2)}\left(\frac{2}{1+\sqrt{4 \varepsilon^{2}+1}}\right)^{2 \ell+1}$	CPD(1)
TPS	$\psi(t)=(r(t))^{2} \log (r(t))$	$\frac{8 \pi}{(\ell+2)(\ell+1) \ell(\ell-1)}$	CPD(2)
Cubic	$\psi(t)=(r(t))^{3}$	$\frac{18 \pi}{(\ell+5 / 2)(\ell+3 / 2)(\ell+1 / 2)(\ell-1 / 2)(\ell-3 / 2)}$	CPD (2)

- First three kernels are specific to \mathbb{S}^{2}, while the last 5 are RBFs restricted to \mathbb{S}^{2}.

Error estimates

- Goal: Present some known results on error estimates for SBF interpolants for target function of various smoothness.
- We will introduce (or review) some background notation and material that is necessary for the proofs of the estimates, but will not prove them.
- Reproducing kernel Hilbert spaces (RKHS)
- Sobolev spaces on \mathbb{S}^{2};
- Native spaces;
- Geometric properties of node sets $X \subset \mathbb{S}^{2}$.
- Brief historical notes regarding SBF error estimates:
- Earliest results appear to be Freeden (1981), but do not depend on ψ or target.
- First Sobolev-type estimates were given in Jetter, Stöckler, \& Ward (1999).
- Since then many more results have appeared, e.g.

Levesley, Light, Ragozin, \& Sun (1999), v. Golitschek \& Light (2001), Morton \& Neamtu (2002), Narcowich \& Ward (2002), Hubbert \& Morton (2004,2004), Levesley \& Sun (2005), Narcowich, Sun, \& Ward (2007), Narcowich, Sun, Ward, \& Wendland (2007), Sloan \& Sommariva (2008), Sloan \& Wendland (2009), Hangelbroek (2011).

Reproducing kernel Hilbert spaces

- Reproducing kernel Hilbert spaces (RKHS) play a key role deriving error estimates for SBF (and more generally RBF) interpolants.
- They allow one to view the interpolation problem as the solution to a particular optimization problem.

Definition. Let $\mathcal{F}(\Omega)$ be a Hilbert space of functions $f: \Omega \rightarrow \mathbb{R}$ with inner product $\langle\cdot, \cdot\rangle_{\mathcal{F}}$. If there exists a kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$ such that for all $\mathbf{y} \in \Omega$

$$
f(\mathbf{y})=\langle f, \Phi(\cdot, \mathbf{y})\rangle_{\mathcal{F}} \text { for all } f \in \mathcal{F},
$$

then \mathcal{F} is called a RKHS with reproducing kernel Φ.

Reproducing kernel Hilbert spaces

- Reproducing kernel Hilbert spaces (RKHS) play a key role deriving error estimates for SBF (and more generally RBF) interpolants.
- They allow one to view the interpolation problem as the solution to a particular optimization problem.

Definition. Let $\mathcal{F}(\Omega)$ be a Hilbert space of functions $f: \Omega \rightarrow \mathbb{R}$ with inner product $\langle\cdot, \cdot\rangle_{\mathcal{F}}$. If there exists a kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$ such that for all $\mathbf{y} \in \Omega$

$$
f(\mathbf{y})=\langle f, \Phi(\cdot, \mathbf{y})\rangle_{\mathcal{F}} \text { for all } f \in \mathcal{F}
$$

then \mathcal{F} is called a RKHS with reproducing kernel Φ.

- The reproducing kernel Φ of a RKHS is unique.
- Existence of Φ is equivalent to the point evaluation functional $\delta_{\mathbf{y}}: \mathcal{F} \rightarrow \mathbb{R}$ being continuous. (Implied by Reisz representation theorem).
- Φ also satisfies the following:
(1) $\Phi(\mathbf{x}, \mathbf{y})=\Phi(\mathbf{y}, \mathbf{x})$ for $x, y \in \Omega$;
(2) Φ is positive semi-definite on Ω.

Reproducing kernel Hilbert spaces

Example. The space spanned by all spherical harmonics of degree n with the standard $L_{2}\left(\mathbb{S}^{2}\right)$ inner product $\langle\cdot, \cdot\rangle_{L_{2}}$ is a RKHS with reproducing kernel

$$
\Phi_{n}(\mathbf{x}, \mathbf{y})=\sum_{k=0}^{n} \frac{2 k+1}{4 \pi} P_{k}\left(\mathbf{x}^{T} \mathbf{y}\right)
$$

Reproducing kernel Hilbert spaces

Example. The space spanned by all spherical harmonics of degree n with the standard $L_{2}\left(\mathbb{S}^{2}\right)$ inner product $\langle\cdot, \cdot\rangle_{L_{2}}$ is a RKHS with reproducing kernel

$$
\Phi_{n}(\mathbf{x}, \mathbf{y})=\sum_{k=0}^{n} \frac{2 k+1}{4 \pi} P_{k}\left(\mathbf{x}^{T} \mathbf{y}\right)
$$

Let $\mathbf{x}, \mathbf{y} \in \mathbb{S}^{2}$ and $f(\mathbf{x})=\sum_{\ell=0}^{n} \sum_{m=-\ell}^{\ell} c_{\ell}^{m} Y_{\ell}^{m}(\mathbf{x})$ for some coefficients c_{ℓ}^{m}. Then

$$
\begin{aligned}
\left\langle f, \Phi_{n}(\cdot, \mathbf{y})\right\rangle_{L_{2}} & =\int_{\mathbb{S}^{2}} f(\mathbf{x}) \Phi_{n}(\mathbf{x}, \mathbf{y}) d \mu(\mathbf{x}) \\
& =\int_{\mathbb{S}^{2}}\left(\sum_{\ell=0}^{n} \sum_{m=-\ell}^{\ell} c_{\ell}^{m} Y_{\ell}^{m}(\mathbf{x})\right)\left(\sum_{k=0}^{n} \frac{2 k+1}{4 \pi} P_{k}\left(\mathbf{x}^{T} \mathbf{y}\right)\right) d \mu(\mathbf{x}) \\
& =\sum_{k=0}^{n} \frac{2 k+1}{4 \pi} \sum_{\ell=0}^{n} \sum_{m=-\ell}^{\ell} c_{\ell}^{m} \int_{\mathbb{S}^{2}} P_{k}\left(\mathbf{x}^{T} \mathbf{y}\right) Y_{\ell}^{m}(\mathbf{x}) d \mu(\mathbf{x}) \\
& =\sum_{k=0}^{n} \frac{2 k+1}{4 \pi} \sum_{m=-k}^{k} \frac{4 \pi}{2 k+1} c_{k}^{m} Y_{k}^{m}(\mathbf{y}) \quad \text { (Funk-Hecke formula) } \\
& =\sum_{k=0}^{n} \sum_{m=-k}^{k} c_{k}^{m} Y_{k}^{m}(\mathbf{y})=f(\mathbf{y})
\end{aligned}
$$

Sobolev spaces

- Sobolev spaces on \mathbb{S}^{2} can be defined in terms of spherical Harmonics.

Definition. The Sobolev space of order τ on \mathbb{S}^{2} is given by

$$
H^{\tau}\left(\mathbb{S}^{2}\right)=\left\{\left.f \in L_{2}\left(\mathbb{S}^{2}\right)\left|\|f\|_{H^{\tau}}^{2}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}(1+\ell(\ell+1))^{\tau}\right| \hat{f}_{\ell}^{m}\right|^{2}<\infty\right\}
$$

Here $\|\cdot\|_{H^{\tau}}$ is a norm induced by the inner product

$$
\langle f, g\rangle_{H^{\tau}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}(1+\ell(\ell+1))^{\tau} \hat{f}_{\ell}^{m} \hat{g}_{\ell}^{m}
$$

where $\hat{f}_{\ell}^{m}=\left\langle f, Y_{\ell}^{m}\right\rangle_{L_{2}}=\int_{\mathbb{S}^{2}} f(\mathbf{x}) Y_{\ell}^{m}(\mathbf{x}) d \mu(\mathbf{x})$.

- Compare to Sobolev spaces on \mathbb{R}^{3} :

$$
H^{\beta}\left(\mathbb{R}^{3}\right)=\left\{\left.f \in L_{2}\left(\mathbb{R}^{3}\right)\left|\|f\|_{H^{\beta}}^{2}=\int_{\mathbb{R}^{3}}\left(1+\|\boldsymbol{\omega}\|^{2}\right)^{\beta}\right| \hat{f}(\boldsymbol{\omega})\right|^{2} d \mathbf{x}<\infty\right\}
$$

Sobolev spaces

- Sobolev spaces on \mathbb{S}^{2} can be defined in terms of spherical Harmonics.

Definition. The Sobolev space of order τ on \mathbb{S}^{2} is given by

$$
H^{\tau}\left(\mathbb{S}^{2}\right)=\left\{\left.f \in L_{2}\left(\mathbb{S}^{2}\right)\left|\|f\|_{H^{\tau}}^{2}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}(1+\ell(\ell+1))^{\tau}\right| \hat{f}_{\ell}^{m}\right|^{2}<\infty\right\}
$$

- Sobolev embedding theorem implies $H^{\tau}\left(\mathbb{S}^{2}\right)$ is continuously embedded in $C\left(\mathbb{S}^{2}\right)$ for $\tau>1$. Thus, $H^{\tau}\left(\mathbb{S}^{2}\right)$ is a RKHS.
- Can show the reproducing kernel is $\Phi_{\tau}(\mathbf{x}, \mathbf{y})=\sum_{\ell=0}^{\infty}(1+\ell(\ell+1))^{-\tau} \frac{2 \ell+1}{4 \pi} P_{\ell}(\mathbf{x} \cdot \mathbf{y})$.

Native spaces

- Each positive definite zonal kernel ψ naturally gives rise to a RKHS on \mathbb{S}^{2}, which is called the native space of ψ.
- This is the natural space to understand approximation with shifts of ψ.

Definition. Let ψ be a positive definite zonal kernel with spherical Fourier coefficients $\hat{\psi}_{\ell}, \ell=0,1, \ldots$. The native space \mathcal{N}_{ψ} of ψ is given by

$$
\mathcal{N}_{\psi}=\left\{f \in L_{2}\left(\mathbb{S}^{2}\right) \left\lvert\,\|f\|_{\mathcal{N}_{\psi}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{\left|\hat{f}_{\ell}^{m}\right|^{2}}{\hat{\psi}_{\ell}}<\infty\right.\right\}
$$

with inner product

$$
\langle f, g\rangle_{\mathcal{N}_{\psi}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{\hat{f}_{\ell}^{m} \hat{g}_{\ell}^{m}}{\hat{\psi}_{\ell}} .
$$

- A similar definition holds for conditionally positive definite kernels, but the inner product has to be slightly modified (see Hubbert, 2002).

Native spaces

- An important "optimality" result stems from $\mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)$ being a RKHS.
- Consider the following optimization problem:

Problem. Let $X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ be a distinct set of nodes on \mathbb{S}^{2} and let $\left\{f_{1}, \ldots, f_{N}\right\}$ be samples of some target function f on X. Find $s \in \mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)$ that satisfies $s\left(\mathbf{x}_{j}\right)=f_{j}, j=1, \ldots, N$ and has minimal native space norm $\|s\|_{\mathcal{N}_{\psi}}$, i.e.

$$
\operatorname{minimize}\left\{\|s\|_{\mathcal{N}_{\psi}} \mid s \in \mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right) \text { with }\left.s\right|_{X}=\left.f\right|_{X}\right\} .
$$

Solution: s is the unique SBF interpolant to $\left.f\right|_{X}$ using the kernel ψ.

- SBF interpolants also have nice properties in their respective native spaces:

1. $\left\|f-I_{\psi, X} f\right\|_{\mathcal{N}_{\psi}}^{2}+\left\|I_{\psi, X} f\right\|_{\mathcal{N}_{\psi}}^{2}=\|f\|_{\mathcal{N}_{\psi}}^{2}$
2. $\left\|f-I_{\psi, X} f\right\|_{\mathcal{N}_{\psi}} \leq\|f\|_{\mathcal{N}_{\psi}}$

Native spaces

- Note similarity between Sobolev space $H^{\tau}\left(\mathbb{S}^{2}\right)$ and $\mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)$:

$$
\begin{aligned}
& H^{\tau}\left(\mathbb{S}^{2}\right)=\left\{\left.f \in L_{2}\left(\mathbb{S}^{2}\right)\left|\|f\|_{H^{\tau}}^{2}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}(1+\ell(\ell+1))^{\tau}\right| \hat{f}_{\ell}^{m}\right|^{2}<\infty\right\} \\
& \mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)=\left\{f \in L_{2}\left(\mathbb{S}^{2}\right) \left\lvert\,\|f\|_{\mathcal{N}_{\psi}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{\left|\hat{f}_{\ell}^{m}\right|^{2}}{\hat{\psi}_{\ell}}<\infty\right.\right\}
\end{aligned}
$$

- If $\hat{\psi}_{\ell} \sim(1+\ell(\ell+1))^{-\tau}$, then it follows that $\mathcal{N}_{\psi}=H^{\tau}$, with equivalent norms.
- This is one reason we care about the asymptotic behavior of $\hat{\psi}_{\ell}$.
- For RBFs restricted to \mathbb{S}^{2}, we have the following nice result connecting the asymptotics of the spherical Fourier coefficients to the Fourier transform (Levesley \& Hubbert (2001), zu Castell \& Filbir (2005), Narcowich, Sun, \& Ward (2007)):

> If ψ is an SBF obtained by restricting an RBF ϕ to \mathbb{S}^{2} and if $\hat{\phi}(\boldsymbol{\omega}) \sim\left(1+\|\boldsymbol{\omega}\|_{2}^{2}\right)^{-(\tau+1 / 2)}$ then $\hat{\psi}_{\ell} \sim(1+\ell(\ell+1))^{-\tau}$.

Native spaces

- Examples of radial kernels ϕ and their norm-equivalent native spaces \mathcal{N}_{ψ} when restricted to \mathbb{S}^{2} :

Name	RBF (use $r=\sqrt{2-2 t}$ to get SBF ψ)	$\mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)$
Matern	$\phi_{2}(r)=e^{-\varepsilon r}$	$H^{1.5}\left(\mathbb{S}^{2}\right)$
TPS (1)	$\phi(r)=r^{2} \log (r)$	$H^{2}\left(\mathbb{S}^{2}\right)$
Cubic	$\phi(r)=r^{3}$	$H^{2.5}\left(\mathbb{S}^{2}\right)$
TPS (2)	$\phi(r)=r^{4} \log (r)$	$H^{3}\left(\mathbb{S}^{2}\right)$
Wendland	$\phi_{3,2}(r)=(1-\varepsilon r)_{+}^{6}\left(3+18(\varepsilon r)+15(\varepsilon r)^{2}\right)$	$H^{3.5}\left(\mathbb{S}^{2}\right)$
Matern	$\phi_{5}(r)=e^{-\varepsilon r}\left(15+15(\varepsilon r)+6(\varepsilon r)^{2}+(\varepsilon r)^{3}\right)$	$H^{4.5}\left(\mathbb{S}^{2}\right)$

- The spherical Fourier coefficients for all these restricted kernels have algebraic decay rates.
- For kernels with spherical Fourier coefficients with exponential decay rates (e.g. Gaussian and multiquadric) the Native spaces are no longer equivalent to Sobolev spaces.
- These natives spaces do satisfy: $\mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right) \subset H^{\tau}\left(\mathbb{S}^{2}\right)$ for all $\tau>1$.
- Error estimates for interpolants are directly linked to the native space of ψ.

Geometric properties of node sets

- The following properties for node sets on the sphere appear in the error estimates:
- Mesh norm

$$
h_{X}=\sup _{\mathbf{x} \in \mathbb{S}^{2}} \operatorname{dist}_{\mathbb{S}^{2}}(\mathbf{x}, X)
$$

- Separation radius

$$
q_{X}=\frac{1}{2} \min _{i \neq j} \operatorname{dist}_{\mathbb{S}^{2}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- Mesh ratio

$$
X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}
$$

(Only part of the sphere is shown)

$$
\rho_{X}=\frac{h_{X}}{q_{X}}
$$

Interpolation error estimates

- We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, \& Ward (1999), Morton \& Neamtu (2002), Hubbert \& Morton (2004,2004), Narcowich, Sun, Ward, \& Wendland (2007)

Notation:

- ψ is the SBF
- $\hat{\psi}_{\ell} \sim(1+\ell(\ell+1))^{-\tau}, \tau>1$
- $\mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)=H^{\tau}\left(\mathbb{S}^{2}\right)$
- $I_{X} f$ is SBF interpolant of $\left.f\right|_{X}$
- $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$
- $h_{X}=$ mesh-norm
- $q_{X}=$ separation radius
- $\rho_{X}=h_{X} / q_{X}$, mesh ratio

Theorem. Target functions in the native space.
If $f \in H^{\tau}\left(\mathbb{S}^{2}\right)$ then $\left\|f-I_{X} f\right\|_{L_{p}\left(\mathbb{S}^{2}\right)}=\mathcal{O}\left(h_{X}^{\tau-2(1 / 2-1 / p)_{+}}\right)$for $1 \leq p \leq \infty$. In particular,

$$
\begin{aligned}
\left\|f-I_{X} f\right\|_{L_{1}\left(\mathbb{S}^{2}\right)} & =\mathcal{O}\left(h_{X}^{\tau}\right) \\
\left\|f-I_{X} f\right\|_{L_{2}\left(\mathbb{S}^{2}\right)} & =\mathcal{O}\left(h_{X}^{\tau}\right) \\
\left\|f-I_{X} f\right\|_{L_{\infty}\left(\mathbb{S}^{2}\right)} & =\mathcal{O}\left(h_{X}^{\tau-1}\right)
\end{aligned}
$$

Interpolation error estimates

- We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, \& Ward (1999), Morton \& Neamtu (2002), Hubbert \& Morton (2004,2004), Narcowich, Sun, Ward, \& Wendland (2007)

Notation:

- ψ is the SBF
- $\hat{\psi}_{\ell} \sim(1+\ell(\ell+1))^{-\tau}, \tau>1$
- $\mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)=H^{\tau}\left(\mathbb{S}^{2}\right)$
- $I_{X} f$ is SBF interpolant of $\left.f\right|_{X}$
- $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$
- $h_{X}=$ mesh-norm
- $q_{X}=$ separation radius
- $\rho_{X}=h_{X} / q_{X}$, mesh ratio

Theorem. Target functions twice as smooth as the native space.

$$
\text { If } f \in H^{2 \tau}\left(\mathbb{S}^{2}\right) \text { then }\left\|f-I_{X} f\right\|_{L_{p}\left(\mathbb{S}^{2}\right)}=\mathcal{O}\left(h_{X}^{2 \tau}\right) \text { for } 1 \leq p \leq \infty .
$$

Remark. Known as the "doubling trick" from spline theory. (Schaback 1999)

Interpolation error estimates

- We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, \& Ward (1999), Morton \& Neamtu (2002), Hubbert \& Morton (2004,2004), Narcowich, Sun, Ward, \& Wendland (2007)

Notation:

- ψ is the SBF
- $\hat{\psi}_{\ell} \sim(1+\ell(\ell+1))^{-\tau}, \tau>1$
- $\mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)=H^{\tau}\left(\mathbb{S}^{2}\right)$
- $I_{X} f$ is SBF interpolant of $\left.f\right|_{X}$
- $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$
- $h_{X}=$ mesh-norm
- $q_{X}=$ separation radius
- $\rho_{X}=h_{X} / q_{X}$, mesh ratio

Theorem. Target functions rougher than the native space.
If $f \in H^{\beta}\left(\mathbb{S}^{2}\right)$ for $\tau>\beta>1$ then $\left\|f-I_{X} f\right\|_{L_{p}\left(\mathbb{S}^{2}\right)}=\mathcal{O}\left(\rho^{\tau-\beta} h_{X}^{\tau-2(1 / 2-1 / p)_{+}}\right)$ for $1 \leq p \leq \infty$.

Remark.

(1) Referred to as "escaping the native space". (Narcowich, Ward, \& Wendland (2005, 2006)).
(2) These rates are the best possible.

Interpolation error estimates

- Error estimates for infinitely smooth kernels (e.g. Gaussian, multiquadric).

Jetter, Stöckler, \& Ward (1999)

Notation:

- ψ is the SBF
- $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$
- $\hat{\psi}_{\ell} \sim \exp (-\alpha(2 \ell+1)), \alpha>0$
- $h_{X}=$ mesh-norm
- $\mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right)=\left\{f \in L_{2}\left(\mathbb{S}^{2}\right) \left\lvert\,\|f\|_{\mathcal{N}_{\psi}}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{\left|\hat{f}_{\ell}^{m}\right|^{2}}{\hat{\psi}_{\ell}}<\infty\right.\right\}$

Theorem. Target functions in the native space.

$$
\text { If } f \in \mathcal{N}_{\psi}\left(\mathbb{S}^{2}\right) \text { then }\left\|f-I_{X} f\right\|_{L_{\infty}\left(\mathbb{S}^{2}\right)}=\mathcal{O}\left(h_{X}^{-1} \exp \left(-\alpha / 2 h_{X}\right)\right) .
$$

Remarks:

(1) This is called spectral (or exponential) convergence.
(2) Function space may be small, but does include all band-limited functions.
(3) Only known result I am aware of (too bad there are not more).
(4) Numerical results indicate convergence is also fine for less smooth functions.

Optimal nodes

- If one has the freedom to choose the nodes, then the error estimates indicate they should be roughly as evenly spaced as possible.

Examples:

Minimum energy $s=2$

Hardin \& Saff (2004)

Fibonacci

Swinbank \& Purser (2006)
Minimum energy, $s=3$

Riesz energy: $\|\mathbf{x}-\mathbf{y}\|_{2}^{-s}$

Equal area

Saff \& Kuijlaars (1997)
Maximal determinant

Womersley \& Sloan (2001)

What about the shape parameter?

- Smooth kernels with a shape parameter.

Ex: $\quad \phi(r)=\exp \left(-(\varepsilon r)^{2}\right) \quad \phi(r)=\frac{1}{\sqrt{1+(\varepsilon r)^{2}}} \quad \phi(r)=\sqrt{1+(\varepsilon r)^{2}}$
Issue: Effect of decreasing ε leads to severe ill-conditioning of interp. matrices

$$
\varepsilon=1
$$

Basis functions get flatter as $\varepsilon \longrightarrow 0$

Linear system for determining the interpolation coefficients

$$
\underbrace{\left[\begin{array}{ccc}
\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{N}\right\|\right) \\
\phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{N}\right\|\right) \\
\vdots & \vdots & \ddots \\
\phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{N}\right\|\right)
\end{array}\right]}_{A_{X}} \underbrace{\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]}_{\underline{c}}=\underbrace{\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]}_{\underline{f}} \begin{aligned}
& A_{X} \text { is guaranteed to be } \\
& \text { positive definite if } \\
& \phi \text { is positive definite. } \\
& \text { RBF-Direct }
\end{aligned}
$$

RBF interpolant: $\quad I_{X, \varepsilon} f(\mathbf{x})=\sum_{j=1}^{N} c_{j}(\varepsilon) \phi_{\varepsilon}\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)$
Theorem (Driscoll \& Fornberg (2002)). For N nodes in 1-D, the RBF interpolant (for certain smooth kernels) converges to the standard Lagrange interpolant as $\varepsilon \longrightarrow 0$ (flat limit)

- Higher dimensions: Limit usually exits and takes the form of a multivariate polynomial as $\varepsilon \longrightarrow 0$.
- Fornberg, W, \& Larsson (2004), Larsson \& Fornberg (2005), Schaback (2005,2006), Lee, Yoon, \& Yoon (2007)
- In the case of the Gaussian kernel, the interpolant always converges to the de Boor \& Ron "least polynomial interpolant".
- Sphere: Limit (usually) exits and converges to a spherical harmonic interpolant (Fornberg \& Piret (2007)).

Base vs. space

- Key observation: The space spanned by linear combinations of positive definite radial kernels (in \mathbb{R}^{d} or \mathbb{S}^{2}) is good for approximation BUT, the standard basis $\left\{\phi\left(\cdot, \mathbf{x}_{1}\right), \ldots, \phi\left(\cdot, \mathbf{x}_{N}\right)\right\}$ can be problematic. Analogy: (Fornberg)

Vectors
Bad basis for \mathbb{R}^{2}

Bad basis: $x^{n}, n=0,1, \ldots$

Splines

Truncated powers: $(x)_{+}^{3}$

Good basis for \mathbb{R}^{2}

Chebyshev basis: $T_{n}(x), n=0,1, \ldots$

Bspline basis: $b_{3}(x)$

Using a bad basis for flat kernels:

Error vs Shape Parameter

RBF Interpolation Matrix

Using a good basis for flat kernels:

Error vs Shape Parameter

- For cardinal data $f\left(\mathbf{x}_{j}\right)=\left\{\begin{array}{ll}1 & \text { if } j=1 \\ 0 & \text { if } j \neq 1\end{array}\right.$ the interpolant can be written as

$$
I_{X, \varepsilon} f(\mathbf{x})=\frac{\operatorname{det}\left[\begin{array}{cccc}
\phi_{\varepsilon}\left(\left\|\mathbf{x}-\mathbf{x}_{1}\right\|\right) & \phi_{\varepsilon}\left(\left\|\mathbf{x}-\mathbf{x}_{2}\right\|\right) & \cdots & \phi_{\varepsilon}\left(\left\|\mathbf{x}-\mathbf{x}_{N}\right\|\right) \\
\phi_{\varepsilon}\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) & \cdots & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{N}\right\|\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{\varepsilon}\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{1}\right\|\right) & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{2}\right\|\right) & \cdots & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{N}\right\|\right)
\end{array}\right]}{\operatorname{det}\left[\begin{array}{cccc}
\phi_{\varepsilon}\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) & \cdots & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{N}\right\|\right) \\
\phi_{\varepsilon}\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) & \cdots & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{N}\right\|\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{\varepsilon}\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{1}\right\|\right) & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{2}\right\|\right) & \cdots & \phi_{\varepsilon}\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{N}\right\|\right)
\end{array}\right]}
$$

- Expand determinants using $\phi_{\varepsilon}(r)=a_{0}+a_{1} \varepsilon^{2} r^{2}+a_{2} \varepsilon^{4} r^{4}+a_{3} \varepsilon^{6} r^{6}+\cdots$:

$$
I_{X, \varepsilon} f(\mathbf{x})=\frac{\varepsilon^{2 p}\{\text { poly. in } \mathbf{x}\}+\varepsilon^{2(p+1)}\{\text { poly. in } \mathbf{x}\}+\cdots}{\varepsilon^{2 q}\{\text { constant }\}+\varepsilon^{2(q+1)}\{\text { constant }\}+\cdots}
$$

- In general (and always for GA) $p=q$ so that the $\lim _{\varepsilon \longrightarrow 0} s(\mathbf{x}, \varepsilon)$ exists.

Behavior of interpolants in the flat limit

- Expand determinants using $\phi_{\varepsilon}(r)=a_{0}+a_{1} \varepsilon^{2} r^{2}+a_{2} \varepsilon^{4} r^{4}+a_{3} \varepsilon^{6} r^{6}+\cdots$:

$$
I_{X, \varepsilon} f(\mathbf{x})=\frac{\varepsilon^{2 p}\{\text { poly. in } \mathbf{x}\}+\varepsilon^{2(p+1)}\{\text { poly. in } \mathbf{x}\}+\cdots}{\varepsilon^{2 q}\{\text { constant }\}+\varepsilon^{2(q+1)}\{\text { constant }\}+\cdots}
$$

- In general (and always for GA) $p=q$ so that the $\lim _{\varepsilon \longrightarrow 0} s(\mathbf{x}, \varepsilon)$ exists.
- Example values of $2 p$ and $2 q$:

	$d-$	N - number of data points							
	dimension	2	3	5	10	20	50	100	200
Leading power of ϵ	1	2	6	20	90	380	2450	9900	39800
in det (A) for both	2	2	4	12	40	130	570	1690	4940
numer. and denom.	3	2	4	10	30	90	360	980	2610

- High powers of ε indicate extreme ill-conditioning.
- Stable algorithms (better bases) are needed to reach the flat limit.

Uncertainty principle misconception

- Schaback's uncertainty principle:

Principle: One cannot simultaneously achieve good conditioning and high accuracy.
Misconception: Accuracy that can be achieved is limited by ill-conditioning.

Restatement:

One cannot simultaneously achieve good conditioning and high accuracy when using the standard basis.

- It's a matter of base vs. space.
- Literature for interpolation with "flat" kernels is growing:

```
Theory: Driscoll & Fornberg (2002)
    Larsson & Fornberg (2003; 2005)
    Fornberg, Wright, & Larsson (2004)
    Schaback (2005; 2008)
    Platte & Driscoll (2005)
    Fornberg, Larsson, & Wright (2006)
    deBoor (2006)
    Fornberg & Zuev (2007)
    Lee, Yoon, & Yoon (2007)
    Fornberg & Piret (2008)
    Buhmann, Dinew, & Larsson (2010)
    Platte (2011)
    Song, Riddle, Fasshauer, & Hickernell (2011)
```

Stable Fornberg \& Wright (2004) algorithms: Fornberg \& Piret (2007)

Fornberg, Larsson, \& Flyer (2011)
Fasshauer \& McCourt (2011)
Gonnet, Pachon, \& Trefethen (2011)
Pazouki \& Schaback (2011)
De Marchi \& Santin (2013)
Fornberg, Letho, Powell (2013)
Wright \& Fornberg (2013)

Better kernel bases for the sphere: RBF-QR algorithm

- Key idea behind the RBF-QR algorithm is to exploit the spherical harmonic expansion of the kernel:

$$
\phi_{\varepsilon}(\|\mathbf{x}-\mathbf{y}\|)=\phi_{\varepsilon}\left(\sqrt{2-2 \mathbf{x}^{T} \mathbf{y}}\right)=\psi_{\varepsilon}\left(\mathbf{x}^{T} \mathbf{y}\right)=\sum_{\ell=0}^{\infty} \hat{\psi}_{\varepsilon}(\ell) \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\mathbf{x}) Y_{\ell}^{m}(\mathbf{y})
$$

- And use the nice properties of the resulting spherical Fourier coefficients:

Name	Kernel $(r(t)=\sqrt{2-2 t})$	Fourier coefficients $\hat{\psi}_{\varepsilon}(\ell)(\varepsilon>0)$
Gaussian	$\psi(t)=\exp \left(-(\varepsilon r(t))^{2}\right)$	$\varepsilon^{2 \ell} \frac{4 \pi^{3 / 2}}{\varepsilon^{2 \ell+1}} e^{-2 \varepsilon^{2} I_{\ell+1 / 2}\left(2 \varepsilon^{2}\right)}$
IMQ	$\psi(t)=\frac{1}{\sqrt{\left.1+(\varepsilon r(t))^{2}\right)}}$	$\varepsilon^{2 \ell} \frac{4 \pi}{(\ell+1 / 2)}\left(\frac{2}{1+\sqrt{4 \varepsilon^{2}+1}}\right)^{2 \ell+1}$
MQ	$\psi(t)=-\sqrt{\left.1+(\varepsilon r(t))^{2}\right)}$	$\varepsilon^{2 \ell \frac{2 \pi\left(2 \varepsilon^{2}+1+(\ell+1 / 2) \sqrt{1+4 \varepsilon^{2}}\right)}{(\ell+3 / 2)(\ell+1 / 2)(\ell-1 / 2)}\left(\frac{2}{1+\sqrt{4 \varepsilon^{2}+1}}\right)^{2 \ell+1}}$

Note how the powers of ε appear in the coefficients.

- Can redefine the spherical harmonic expansion as:

$$
\psi_{\varepsilon}\left(\mathbf{x}^{T} \mathbf{y}\right)=\sum_{\ell=0}^{\infty} \varepsilon^{2 \ell} \widetilde{\psi}_{\varepsilon}(\ell) \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\mathbf{x}) Y_{\ell}^{m}(\mathbf{y}) \quad\left(\tilde{\psi}_{\varepsilon}(\ell)=\varepsilon^{-2 \ell} \hat{\psi}(\ell)\right)
$$

Better kernel bases for the sphere: RBF-QR algorithm

- For $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, we can write each basis function $\psi_{\varepsilon}\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$ as

$$
\begin{aligned}
\psi_{\varepsilon}\left(\mathbf{x}^{T} \mathbf{x}_{1}\right)= & \widetilde{\psi}_{\varepsilon}(0) Y_{0}^{0}\left(\mathbf{x}_{1}\right) Y_{0}^{0}(\mathbf{x})+ \\
& \varepsilon^{2} \widetilde{\psi}_{\varepsilon}(1)\left\{Y_{1}^{-1}\left(\mathbf{x}_{1}\right) Y_{1}^{-1}(\mathbf{x})+Y_{1}^{0}\left(\mathbf{x}_{1}\right) Y_{1}^{0}(\mathbf{x})+Y_{1}^{1}\left(\mathbf{x}_{1}\right) Y_{1}^{1}(\mathbf{x})\right\}+ \\
& \varepsilon^{4} \widetilde{\psi}_{\varepsilon}(2)\{\ldots \ldots\}+\varepsilon^{6} \widetilde{\psi}_{\varepsilon}(3)\{\ldots \ldots\}+\varepsilon^{8} \widetilde{\psi}_{\varepsilon}(4)\{\ldots \ldots\}+\ldots \\
\psi_{\varepsilon}\left(\mathbf{x}^{T} \mathbf{x}_{2}\right)= & \widetilde{\psi}_{\varepsilon}(0) Y_{0}^{0}\left(\mathbf{x}_{2}\right) Y_{0}^{0}(\mathbf{x})+ \\
& \varepsilon^{2} \widetilde{\psi}_{\varepsilon}(1)\left\{Y_{1}^{-1}\left(\mathbf{x}_{2}\right) Y_{1}^{-1}(\mathbf{x})+Y_{1}^{0}\left(\mathbf{x}_{2}\right) Y_{1}^{0}(\mathbf{x})+Y_{1}^{1}\left(\mathbf{x}_{2}\right) Y_{1}^{1}(\mathbf{x})\right\}+ \\
& \varepsilon^{4} \widetilde{\psi}_{\varepsilon}(2)\{\ldots \ldots\}+\varepsilon^{6} \widetilde{\psi}_{\varepsilon}(3)\{\ldots \ldots\}+\varepsilon^{8} \widetilde{\psi}_{\varepsilon}(4)\{\ldots \ldots\}+\ldots \\
\vdots & \vdots \\
\psi_{\varepsilon}\left(\mathbf{x}^{T} \mathbf{x}_{N}\right)= & \widetilde{\psi}_{\varepsilon}(0) Y_{0}^{0}\left(\mathbf{x}_{N}\right) Y_{0}^{0}(\mathbf{x})+ \\
& \varepsilon^{2} \widetilde{\psi}_{\varepsilon}(1)\left\{Y_{1}^{-1}\left(\mathbf{x}_{N}\right) Y_{1}^{-1}(\mathbf{x})+Y_{1}^{0}\left(\mathbf{x}_{N}\right) Y_{1}^{0}(\mathbf{x})+Y_{1}^{1}\left(\mathbf{x}_{N}\right) Y_{1}^{1}(\mathbf{x})\right\}+ \\
& \varepsilon^{4} \widetilde{\psi}_{\varepsilon}(2)\{\ldots \ldots\}+\varepsilon^{6} \widetilde{\psi}_{\varepsilon}(3)\{\ldots \ldots\}+\varepsilon^{8} \widetilde{\psi}_{\varepsilon}(4)\{\ldots \ldots\}+\ldots
\end{aligned}
$$

- For simplicity we assume N is a perfect square $(N=n+1)^{2}$.

Better kernel bases for the sphere: RBF-QR algorithm

- Or in matrix vector form as

$$
\begin{gathered}
{\left[\begin{array}{c}
\psi\left(\mathbf{x}^{T} \mathbf{x}_{1}\right) \\
\psi\left(\mathbf{x}^{T} \mathbf{x}_{2}\right) \\
\vdots \\
\psi\left(\mathbf{x}^{T} \mathbf{x}_{N}\right)
\end{array}\right]=B E\left[\begin{array}{c}
Y_{0}^{0}(\mathbf{x}) \\
Y_{1}^{1}(\mathbf{x}) \\
Y_{1}^{0}(\mathbf{x}) \\
Y_{1}^{1}(\mathbf{x}) \\
\vdots
\end{array}\right]} \\
B=\left[\begin{array}{ccccc}
\widetilde{\psi}(0) Y_{0}^{0}\left(\mathbf{x}_{1}\right) & \widetilde{\psi}(1) Y_{1}^{-1}\left(\mathbf{x}_{1}\right) & \widetilde{\psi}(1) Y_{1}^{0}\left(\mathbf{x}_{1}\right) & \widetilde{\psi}(1) Y_{1}^{1}\left(\mathbf{x}_{1}\right) & \ldots \\
\widetilde{\psi}(0) Y_{0}^{0}\left(\mathbf{x}_{2}\right) & \widetilde{\psi}(1) Y_{1}^{-1}\left(\mathbf{x}_{2}\right) & \widetilde{\psi}(1) Y_{1}^{0}\left(\mathbf{x}_{2}\right) & \widetilde{\psi}(1) Y_{1}^{1}\left(\mathbf{x}_{2}\right) & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\widetilde{\psi}(0) Y_{0}^{0}\left(\mathbf{x}_{N}\right) & \widetilde{\psi}(1) Y_{1}^{-1}\left(\mathbf{x}_{N}\right) & \widetilde{\psi}(1) Y_{1}^{0}\left(\mathbf{x}_{N}\right) & \widetilde{\psi}(1) Y_{1}^{1}\left(\mathbf{x}_{N}\right) & \ldots
\end{array}\right] \\
E=\left[\begin{array}{cccc}
1 & & & \\
\varepsilon^{2} & & \\
& \varepsilon^{2} & & \\
& & \varepsilon^{2} & \\
& & & \varepsilon^{4} \\
& & & \ddots
\end{array}\right]
\end{gathered}
$$

$$
\left[\begin{array}{c}
\psi\left(\mathbf{x}^{T} \mathbf{x}_{1}\right) \\
\psi\left(\mathbf{x}^{T} \mathbf{x}_{2}\right) \\
\vdots \\
\psi\left(\mathbf{x}^{T} \mathbf{x}_{N}\right)
\end{array}\right]=B E\left[\begin{array}{c}
Y_{0}^{0}(\mathbf{x}) \\
Y_{1}^{-1}(\mathbf{x}) \\
Y_{1}^{0}(\mathbf{x}) \\
Y_{1}^{1}(\mathbf{x}) \\
\vdots
\end{array}\right] \Longleftrightarrow \underline{\psi}(\mathbf{x})=B E \underline{Y}
$$

- We can't deal with infinite matrices so we truncate according to some tolerance (see Fornberg \& Piret (2007)).
- Let $\mu>n$ be the truncation degree of the expansion.
- Partition the truncated matrices:

$$
B=\left[\begin{array}{ll}
B_{1} & \left.B_{2}\right]
\end{array}\right.
$$

where the columns of B_{1} consist of spherical harmonics up to degree n and B_{2} consist of spherical harmonics from degree $n+1$ to μ.

$$
E=\left[\begin{array}{ll}
E_{1} & \\
& E_{2}
\end{array}\right]
$$

where E_{1} is diagonal with blocks of powers of ε from 0 to $2 n$ and where E_{2} is diagonal with blocks of powers of ε from $2(n+1)$ to 2μ.

Better kernel bases for the sphere: RBF-QR algorithm

$$
\left[\begin{array}{c}
\psi\left(\mathbf{x}^{T} \mathbf{x}_{1}\right) \\
\psi\left(\mathbf{x}^{T} \mathbf{x}_{2}\right) \\
\vdots \\
\psi\left(\mathbf{x}^{T} \mathbf{x}_{N}\right)
\end{array}\right]=B E\left[\begin{array}{c}
Y_{0}^{0}(\mathbf{x}) \\
Y_{1}^{-1}(\mathbf{x}) \\
Y_{1}^{0}(\mathbf{x}) \\
Y_{1}^{1}(\mathbf{x}) \\
\vdots \\
Y_{\nu}^{\nu}(\mathbf{x})
\end{array}\right] \Longleftrightarrow \underline{\psi}(\mathbf{x})=\left[\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right]\left[\begin{array}{ll}
E_{1} & \\
& E_{2}
\end{array}\right] \underline{Y}
$$

- Now we change basis, by $Q R$ decomposition of $\left[\begin{array}{ll}B_{1} & B_{2}\end{array}\right]$ and manipulations with E.

$$
\begin{aligned}
\underline{\psi}(\mathbf{x}) & =Q R\left[\begin{array}{ll}
E_{1} & \\
& E_{2}
\end{array}\right] \underline{Y} \\
& =Q\left[\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right]\left[\begin{array}{ll}
E_{1} & \\
& E_{2}
\end{array}\right] \underline{Y}\left(R_{1} \text { is } N \text {-by- } N \text { and upper triangular }\right) \\
& =Q R_{1}\left[\begin{array}{ll}
I & R_{1}^{-1} R_{2}
\end{array}\right]\left[\begin{array}{cc}
E_{1} & \\
& E_{2}
\end{array}\right] \underline{Y} \\
& =Q R_{1} E_{1} \underbrace{\left[\begin{array}{ll}
I & E_{1}^{-1} R_{1}^{-1} R_{2} E_{2}
\end{array}\right] \underline{Y}}_{\text {New stable basis }}
\end{aligned}
$$

- All negative powers of ε in $E_{1}^{-1} R_{1}^{-1} R_{2} E_{2}$ analytically cancel after some matrix manipulations.

Numerical example

Target function:
$f(\mathbf{x})=\exp \left(-7\left(x+\frac{1}{2}^{2}\right)-8\left(y+\frac{1}{2}\right)^{2}-9\left(z-\frac{1}{\sqrt{2}}\right)^{2}\right) \quad N=1849$ Minimal energy (ME) nodes

- RBF-QR allows one to stably compute "flat" kernel interpolants on the sphere.
- One can reach full numerical precision using this procedure (for smooth enough target functions and large enough N)
- It is more expensive than standard approach (RBF-Direct).
- Work has gone into extending this idea to general Euclidean space, but the procedure is much more complicated.
- Matlab Code for RBF-QR is given in Fornberg \& Piret (2007) and is available in the rbfsphere package.

Concluding remarks

- This was general background material for getting started in this area.
- There is still much more to learn and many interesting problems:
- Approximation (and decomposition) of vector fields.
- Fast algorithms for interpolation using localized bases
- Numerical integration
- RBF generated finite differences
- RBF partition of unity methods
- Numerical solution of partial differential equations on spheres.
- Generalizations to other manifolds.
* If you have any questions or want to chat about research ideas, please come and talk to me.

