2014 Montestigliano Workshop

Radial Basis Functions for Scientific Computing

Grady B. Wright

Boise State University
*This work is supported by NSF grants DMS 0934581

2014 Montestigliano Workshop

Part I: Introduction

Grady B. Wright
Boise State University

*This work is supported by NSF grants DMS 0934581

Overview

- Scattered data interpolation in \mathbb{R}^{d}
- Positive definite radial kernels: radial basis functions (RBF)
- Some theory
- Scattered data interpolation on the sphere \mathbb{S}^{2}
- Positive definite (PD) zonal kernels
- Brief review of spherical harmonics
- Characterization of PD zonal kernels
- Conditionally positive definite zonal kernels
- Examples
- Error estimates:
- Reproducing kernel Hilbert spaces
- Sobolev spaces
- Native spaces
- Geometric properties of node sets
- Optimal nodes on the sphere

Grids, meshes, nodes, used for spherical geometries

- Some examples of grids/meshes/nodes used in numerical methods:

- Methods used:
- Finite-difference, finite-element, finite-volume, semi-Lagrangian
- Double Fourier, spherical harmonics, spectral elements, discontinuous Galerikin (DG), and radial basis functions (RBF)

Overview of some high-order methods for the sphere

Spherical harmonics (SPH):

Expand solution in a set of orthogonal trig-like basis functions which give an entirely uniform resolution over the sphere.
Strengths: Exponential accuracy
Weakness: No practical option for local mesh refinement, Relatively high computational cost,
 Poor scalability on massively parallel machines

Double Fourier series (SPH):

Spectral elements Map sphere to a cube. Form elements on each face of cube. Approximate on elements.

Strengths: Exponential accuracy,
Computationally fast due to FFT
Weakness: No option for local mesh refinement

Strengths:
Accuracy approaching exponential,
Local mesh refinement feasible,
Scalable on massively parallel machines,
Mass conserving (DG)
Weakness:
Loss of efficiency due to unphysical element boundaries, Restrictive time-stepping due to clustered grids, High algorithmic complexity, and preprocessing cost

RBFs for the sphere

Strengths:

- High-order, even exponential, accuracy
- No grids or meshes: nodes can be scattered
- Local refinement is feasible
- No unphysical boundaries

- No unphysical clustering of nodes, allowing large time-steps for purely hyperbolic problems.
- No coordinate singularities to worry about
- Scalable on massively parallel machines (when using "local methods")
- Generalizes easily to other surfaces:

Weakness:

- Tuning of "shape parameter" is required
- Special algorithms required for small shape parameters
- Tuning of stabilization parameter for purely hyperbolic problems is required
- No inherent conservation

Applications of RBF methods on the sphere

- A visual overview:

Shallow water flows: numerical weather prediction

Rayleigh-Bénard convection: Mantle convection

Numerical integration

Vector fields on the sphere: Helmholtz decomposition

Pattern formation:
Turing systems

Geometric modeling

RBF References

- Many good books to consult on RBF theory and applications:

Interpolation in 1-D with polynomials

- Orthogonal polynomial basis functions:

Increasingly oscillatory as the degree increases

Data can be sampled at

1) Equally spaced points:
2) Boundary clustered points:
3) Irregular spaced points:

Interpolant: $I_{N} f=\sum_{k=0}^{N} c_{k} T_{k}(x),\left.I_{N} f\right|_{x=x_{j}}=f_{j}, j=0, \ldots, N$
Expansion coefficients: $\left[\begin{array}{cccc}T_{0}\left(x_{0}\right) & T_{1}\left(x_{0}\right) & \cdots & T_{N}\left(x_{0}\right) \\ T_{0}\left(x_{1}\right) & T_{1}\left(x_{1}\right) & \cdots & T_{N}\left(x_{1}\right) \\ \vdots & \vdots & \ddots & \vdots \\ T_{0}\left(x_{N}\right) & T_{1}\left(x_{N}\right) & \cdots & T_{N}\left(x_{N}\right)\end{array}\right]\left[\begin{array}{c}c_{0} \\ c_{1} \\ \vdots \\ c_{N}\end{array}\right]=\left[\begin{array}{c}f_{0} \\ f_{1} \\ \vdots \\ f_{N}\end{array}\right]$

System is non-singular provided the nodes are distinct

Polynomial interpolation in higher dimensions

- Tensor product grids:

Polar grid:

Use standard 1-D interpolation in each direction and combine as a tensor product.

- What happens for scattered data?

Expansion coefficients:

$$
\left[\begin{array}{cccc}
T_{0}\left(\mathbf{x}_{0}\right) & T_{1}\left(\mathbf{x}_{0}\right) & \cdots & T_{N}\left(\mathbf{x}_{0}\right) \\
T_{0}\left(\mathbf{x}_{1}\right) & T_{1}\left(\mathbf{x}_{1}\right) & \cdots & T_{N}\left(\mathbf{x}_{1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
T_{0}\left(\mathbf{x}_{N}\right) & T_{1}\left(\mathbf{x}_{N}\right) & \cdots & T_{N}\left(\mathbf{x}_{N}\right)
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{N}
\end{array}\right]=\left[\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{N}
\end{array}\right]
$$

Depending on nodes, the system can be singular
$\left\{T_{k}\right\}_{k=0}^{N}$ some bivariate polynomial basis

Polynomial interpolation in higher dimensions

- Tensor product grids:

Polar grid:

Use standard 1-D interpolation in each direction and combine as a tensor product.

- What happens for scattered data?

- Can triangulate the nodes and use splines.
- Achieving high orders of accuracy then becomes and difficult/impossible.
- Extensions to higher dimensions becomes increasingly complex.

Interpolation with kernels

- Let $\Omega \subset \mathbb{R}^{d}$ and $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N}$ a set of nodes on Ω.
- Consider a continuous target function $f: \Omega \rightarrow \mathbb{R}$ sampled at $X:\left.f\right|_{X}$.

Examples:

$\Omega=[-1,1]^{3}$

$\Omega=\mathbb{S}^{2}$

$$
I_{X} f=\sum_{j=1}^{N} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)
$$

where $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$ and c_{j} come from requiring $\left.I_{X} f\right|_{X}=\left.f\right|_{X}$

Interpolation with kernels

$$
\Omega=[-1,1]^{3}
$$

$\Omega=\mathbb{T}^{2}$

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j=1}^{N} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$
- Definition: Φ is a positive definite kernel on Ω if the matrix $A=\left\{\Phi\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\}$ is positive definite for any distinct $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \Omega$, i.e.

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \Phi\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) b_{j}>0, \text { provided }\left\{b_{i}\right\}_{i=1}^{N} \not \equiv 0
$$

- In this case c_{j} are uniquely determined by X and $\left.f\right|_{X}$.

Interpolation with kernels

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and $\left.f\right|_{X}$.

3 . The kernel interpolant should accurately reconstruct f.

Interpolation with kernels

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and $\left.f\right|_{X}$.

3 . The kernel interpolant should accurately reconstruct f.

- For problems like

$$
\Omega=[-1,1]^{3}
$$

Good choice: ϕ is a (conditionally) positive definite radial kernel

$$
\Phi\left(\mathbf{x}, \mathbf{x}_{j}\right)=\phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|_{2}\right)=\phi(r)
$$

- Leads to RBF interpolation.

RBF interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N}$ $I_{X} f(\mathbf{x})=\sum_{j=1} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)$
where $\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}$

RBF interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N}$ $I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)$

$$
\text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
$$

RBF interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N}$ $I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)$

$$
\text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
$$

RBF interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N}$ $I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)$

$$
\text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
$$

RBF interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N}$

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)
$$

$$
\text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
$$

RBF interpolation

Key idea: linear combination of translates

$$
f \quad X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \Omega,\left.\quad f\right|_{X}=\left\{f_{j}\right\}_{j=1}^{N}
$$

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N}$

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)
$$

$$
\text { where }\left\|\mathbf{x}-\mathbf{x}_{j}\right\|=\sqrt{\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}}
$$

RBF interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$\underline{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}$

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)
$$

Linear system for determining the interpolation coefficients

$$
\underbrace{\left[\begin{array}{cccc}
\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{N}\right\|\right) \\
\phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{N}\right\|\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{N}\right\|\right)
\end{array}\right]}_{A_{X}} \underbrace{\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]}_{\underline{c}}=\underbrace{\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]}_{\underline{f}} \begin{aligned}
& A_{X} \text { is guaranteed to be } \\
& \text { positive definite if } \\
& \phi \text { is positive definite. }
\end{aligned}
$$

Positive definite radial kernels

- Important result on positive definite kernels:

Theorem (General kernel). Let ϕ be a continuous kernel in $L_{1}\left(\mathbb{R}^{d}\right)$. Then ϕ is positive definite if and only if ϕ is bounded and its d-dimensional Fourier transform $\hat{\phi}(\boldsymbol{\omega})$ is non-negative and not identically equal to zero.

Remark: Related to Bochner's theorem (1933). Theorem and proof can be found in Wendland (2005).

- To make the result specific to radial kernels, we apply the d-dimensional Fourier transform and use radial symmetry to get (Hankel transform):

$$
\hat{\phi}(\boldsymbol{\omega})=\hat{\phi}\left(\|\boldsymbol{\omega}\|_{2}\right)=\frac{1}{\|\boldsymbol{\omega}\|_{2}^{\nu}} \int_{0}^{\infty} \phi(t) t^{d / 2+1} J_{\nu}\left(\|\boldsymbol{\omega}\|_{2} t\right) d t
$$

where $\nu=d / 2-1$ and J_{ν} is the J-Bessel function of order ν.

- Note that if ϕ is positive definite on \mathbb{R}^{d} then it is positive definite on \mathbb{R}^{k} for any $k \leq d$.

Positive definite radial kernels

- Examples of positive definite kernels on \mathbb{R}^{d}, for any d

$\phi(r)=\exp \left(-(\varepsilon r)^{2}\right)$

- ε is called the shape parameter (more on this later).
- These kernels are infinitely smooth.

Positive definite radial kernels

- Examples of dimension specific positive definite kernels

Finite-smoothness

Matérn

$(\varepsilon r)^{\nu-d / 2} K_{\nu-d / 2}(\varepsilon r)$
PD for $2 \nu>d$
Ex: $e^{-r}\left(r^{2}+3 r+3\right)$

Truncated powers

$$
(1-\varepsilon r)_{+}^{\ell}
$$

PD for $\ell \geq\lfloor d / 2\rfloor+1$

Wendland (1995) $(1-\varepsilon r)_{+}^{k} p_{d, k}(\varepsilon r)$ $p_{d, k}$ is a polynomial whose degree depends on d and k.

Ex: $(1-\varepsilon r)_{+}^{4}(4 \varepsilon r+1)$

Infinite-smoothness

$$
\begin{gathered}
\text { J-Bessel } \\
\frac{J_{d / 2-1}(\varepsilon r)}{(\varepsilon r)^{d / 2}} \\
\text { Ex }(d=3): \frac{\sin (\varepsilon r)}{\varepsilon r}
\end{gathered}
$$

Platte

$$
(\varphi * \varphi)(r)
$$

φ is a $C^{\infty}(\mathbb{R})$ compactly supported radial function.

PD dimension depends
 on convolution dimension.

Conditionally positive definite kernels

- Discussion thus far does not cover many important radial kernels:

Cubic

$$
\phi(r)=r^{3}
$$

Cubic spline in 1-D

Generalization of energy minimizing spline in 2D

Multiquadric

$\phi(r)=\sqrt{1+(\varepsilon r)^{2}}$
Popular kernel and first used in any RBF application; Hardy 1971

- These can covered under the theory of conditionally positive definite kernels.
- CPD kernels can be characterized similar to PD kernels but, using generalized Fourier transforms; see Ch. 8 Wendland 2005 for details.
- See the supplementary lecture slides for details for a characterization of these kernels.

Conditionally positive definite kernels

Definition. A continuous radial kernel $\phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{R}^{d} if, for any distinct $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$, and all $\mathbf{b} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\}$ satisfying

$$
\sum_{j=1}^{N} b_{j} p\left(\mathbf{x}_{j}\right)=0
$$

for all d-variate polynomials of degree $<k$, the following is satisfied:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right) b_{j}>0
$$

Conditionally positive definite kernels

Definition. A continuous radial kernel $\phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{R}^{d} if, for any distinct $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$, and all $\mathbf{b} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\}$ satisfying

$$
\sum_{j=1}^{N} b_{j} p\left(\mathbf{x}_{j}\right)=0
$$

for all d-variate polynomials of degree $<k$, the following is satisfied:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right) b_{j}>0
$$

- Alternatively, ϕ is positive definite on the subspace $V_{k-1} \subset \mathbb{R}^{N}$:

$$
V_{k-1}=\left\{\mathbf{b} \in \mathbb{R}^{N} \mid \sum_{j=1}^{N} b_{j} p\left(\mathbf{x}_{j}\right)=0 \text { for all } p \in \Pi_{k-1}\left(\mathbb{R}^{d}\right)\right\}
$$

where $\Pi_{m}\left(\mathbb{R}^{d}\right)$ is the space of all d-variate polynomials of degree $\leq m$.

- The case $k=0$, corresponds to standard positive definite kernels on \mathbb{R}^{d}.

Conditionally positive definite kernels

Definition. Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{n}$ be a basis for $\Pi_{k-1}\left(\mathbb{R}^{d}\right)(k>1)$. The general RBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{\ell=1}^{n} d_{\ell} p_{\ell}(\mathbf{x}),
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, n$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\frac{f}{\underline{0}} \\
\underline{]}
\end{array}\right] \text {, where } a_{i, j}=\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right), p_{i, \ell}=p_{k}\left(\mathbf{x}_{i}\right)
$$

Conditionally positive definite kernels

Definition. Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{n}$ be a basis for $\Pi_{k-1}\left(\mathbb{R}^{d}\right)(k>1)$. The general RBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{\ell=1}^{n} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, n$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\frac{f}{\underline{0}} \\
\underline{d}
\end{array}\right] \text {, where } a_{i, j}=\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right), p_{i, \ell}=p_{k}\left(\mathbf{x}_{i}\right)
$$

Theorem (Micchelli (1986)). The above linear system is invertible for any distinct X, provided

- $\operatorname{rank}(P)=n$ (i.e. X is unisolvent on $\Pi_{k-1}\left(\mathbb{R}^{d}\right)$),
- ϕ is conditionally positive definite of order k.

Conditionally positive definite kernels

Definition. Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{n}$ be a basis for $\Pi_{k-1}\left(\mathbb{R}^{d}\right)(k>1)$. The general RBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{\ell=1}^{n} d_{\ell} p_{\ell}(\mathbf{x}),
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, n$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\frac{f}{\underline{f}} \\
\underline{0}
\end{array}\right] \text {, where } a_{i, j}=\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right), p_{i, \ell}=p_{k}\left(\mathbf{x}_{i}\right)
$$

Example (Multiquadric, \mathbb{R}^{d}). $\phi(r)=\sqrt{1+(\varepsilon r)^{2}}$

- Conditionally positive definite of order 1 .
- $p_{1}(x, y, z)=1$.

The system has a unique solution.

Conditionally positive definite kernels

Definition. Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{n}$ be a basis for $\Pi_{k-1}\left(\mathbb{R}^{d}\right)(k>1)$. The general RBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{\ell=1}^{n} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, n$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{c}
\frac{f}{\underline{0}} \\
\underline{0}
\end{array}\right], \text { where } a_{i, j}=\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right), p_{i, \ell}=p_{k}\left(\mathbf{x}_{i}\right)
$$

Example (Thin plate spline, $\left.\mathbb{R}^{3}\right) \cdot \phi(r)=r^{2} \log (r)$

- Conditionally positive definite of order 2 .
- $p_{1}(x, y, z)=1, p_{2}(x, y, z)=x, p_{3}(x, y, z)=y$, and $p_{4}(x, y, z)=z$.

The system has a unique solution provided the nodes are not collinear.

Interpolation with kernels (revisited)

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and $\left.f\right|_{X}$.
3. The kernel interpolant should accurately reconstruct f.

- For problems like

$$
\Omega=[-1,1]^{3}
$$

Obvious choice: ϕ is a (conditionally) positive definite radial kernel

$$
\Phi\left(\mathbf{x}, \mathbf{x}_{j}\right)=\phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|_{2}\right)=\phi(r)
$$

- Leads to RBF interpolation.

Interpolation with kernels on the sphere

- Kernel interpolant to $\left.f\right|_{X}: \quad I_{X} f=\sum_{j} c_{j} \Phi\left(\cdot, \mathbf{x}_{j}\right)$.
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \rightarrow \mathbb{R}$

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and $\left.f\right|_{X}$.
3. The kernel interpolant should accurately reconstruct f.

- For problems like

Obvious(?) choice: Φ is a (conditionally) positive definite zonal kernel:

$$
\Phi\left(\mathbf{x}, \mathbf{x}_{j}\right)=\psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)=\psi(t), t \in[-1,1]
$$

- Analog of RBF interpolation for the sphere: SBF interpolation.

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)
$$

SBF interpolation

Key idea: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^{2}

Basic SBF Interpolant for \mathbb{S}^{2}
$I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)$

Linear system for determining the interpolation coefficients

$$
\underbrace{\left[\begin{array}{cccc}
\psi\left(\mathbf{x}_{1}^{T} \mathbf{x}_{1}\right) & \psi\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right) \cdots \psi\left(\mathbf{x}_{1}^{T} \mathbf{x}_{N}\right) \\
\psi\left(\mathbf{x}_{2}^{T} \mathbf{x}_{1}\right) & \psi\left(\mathbf{x}_{2}^{T} \mathbf{x}_{2}\right) \cdots \psi\left(\mathbf{x}_{2}^{T} \mathbf{x}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\psi\left(\mathbf{x}_{N}^{T} \mathbf{x}_{1}\right) & \psi\left(\mathbf{x}_{N}^{T} \mathbf{x}_{2}\right) \cdots \psi\left(\mathbf{x}_{N}^{T} \mathbf{x}_{N}\right)
\end{array}\right]}_{A_{X}} \underbrace{\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]}_{\underline{c}}=\underbrace{\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]}_{\underline{f}} \begin{aligned}
& A_{X} \text { is guaranteed to be positive } \\
& \text { definite if } \psi \text { is a positive definite } \\
& \text { zonal kernel }
\end{aligned}
$$

Positive definite zonal kernels

Definition. A kernel $\Psi: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y})=\psi\left(\mathbf{x}^{T} \mathbf{y}\right)$, where $\psi:[-1,1] \rightarrow \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ.

Positive definite zonal kernels

Definition. A kernel $\Psi: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y})=\psi\left(\mathbf{x}^{T} \mathbf{y}\right)$, where $\psi:[-1,1] \rightarrow \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ.

Definition. A zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{d-1} if for any distinct set of nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{d-1}$ and $\underline{b} \in \mathbb{R}^{N} \backslash\{0\}$ the matrix $A=\left\{\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)\right\}$ is positive definite, i.e.

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) b_{j}>0
$$

Remark: PD zonal kernels are sometimes called spherical basis functions (SBFs).

Positive definite zonal kernels

Definition. A kernel $\Psi: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y})=\psi\left(\mathbf{x}^{T} \mathbf{y}\right)$, where $\psi:[-1,1] \rightarrow \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ.

Definition. A zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{d-1} if for any distinct set of nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{d-1}$ and $\underline{b} \in \mathbb{R}^{N} \backslash\{0\}$ the matrix $A=\left\{\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)\right\}$ is positive definite, i.e.

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) b_{j}>0
$$

Remark: PD zonal kernels are sometimes called spherical basis functions (SBFs).

- The study of positive definite kernels on \mathbb{S}^{d-1} started with Schoenberg (1940).
- Extension of this work, including to conditionally positive definite kernels, began in the 1990s (Cheney and Xu (1992)), and continues today.
- Our interest is strictly in \mathbb{S}^{2} and we will only present results for this case.

Conditionally positive definite zonal kernels

- Similar to \mathbb{R}^{d}, we can define conditionally positive definite zonal kernels.

Definition. A continuous zonal kernel $\psi:[-1,1] \rightarrow \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{S}^{2} if, for any distinct $X=$ $\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, and all $\mathbf{b} \in \mathbb{R}^{N} \backslash\{\mathbf{0}\}$ satisfying

$$
\sum_{j=1}^{N} b_{j} p\left(\mathbf{x}_{j}\right)=0
$$

for all spherical harmonics of degree $<k$, the following is satisfied:

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} \psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) b_{j}>0
$$

- See the supplementary lecture slides for
- Brief introduction to spherical harmonics
- A full characterization for conditionally positive definite zonal kernels.

Conditionally positive definite zonal kernels

Definition. Let $\psi:[-1,1] \rightarrow \mathbb{R}$ be a continuous zonal kernel and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{k^{2}}$ be a basis for the space of all spherical harmonics of degree $k-1$. The general SBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)+\sum_{\ell=1}^{k^{2}} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, k^{2}$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\frac{f}{\underline{0}}
\end{array}\right], \text { where } a_{i, j}=\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right), p_{i, \ell}=p_{\ell}\left(\mathbf{x}_{i}\right)
$$

Theorem. The above linear system is invertible for any distinct X, provided

- $\operatorname{rank}(P)=k^{2}$,
- ψ is conditionally positive definite of of order k.

Conditionally positive definite zonal kernels

Definition. Let $\psi:[-1,1] \rightarrow \mathbb{R}$ be a continuous zonal kernel and $\left\{p_{i}(\mathbf{x})\right\}_{i=1}^{k^{2}}$ be a basis for the space of all spherical harmonics of degree $k-1$. The general SBF interpolant for the distinct nodes $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$ and some target, f, sampled on $X,\left\{f_{j}\right\}_{j=1}^{N}$ is

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \psi\left(\mathbf{x}^{T} \mathbf{x}_{j}\right)+\sum_{\ell=1}^{k^{2}} d_{\ell} p_{\ell}(\mathbf{x})
$$

where $I_{X} f\left(\mathbf{x}_{i}\right)=f_{i}, i=1, \ldots, N$ and $\sum_{j=1}^{N} c_{j} p_{\ell}\left(\mathbf{x}_{j}\right)=0, \ell=1, \ldots, k^{2}$.
In linear system form, these constraints are

$$
\left[\begin{array}{cc}
A & P \\
P^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{c} \\
\underline{d}
\end{array}\right]=\left[\begin{array}{l}
\underline{f} \\
\underline{0}
\end{array}\right], \text { where } a_{i, j}=\psi\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right), p_{i, \ell}=p_{\ell}\left(\mathbf{x}_{i}\right)
$$

Example (Restricted thin plate spline, or surface spline). Let

- $\psi(t)=(1-t) \log (2-2 t)$
- $p_{1}(\mathbf{x})=1, p_{2}(\mathbf{x})=x, p_{3}(\mathbf{x})=y$, and $p_{4}(\mathbf{x})=z$.

The system has a unique solution provided X are distinct.

Restricted radial kernels

- Any (conditionally) positive definite radial kernel ϕ on \mathbb{R}^{3} is also (conditionally) positive definite on \mathbb{S}^{2}.
- In fact, they are (conditionally) positive definite zonal kernels, since

$$
\phi(\|\mathbf{x}-\mathbf{y}\|)=\phi\left(\sqrt{2-2 \mathbf{x}^{T} \mathbf{y}}\right)=\psi\left(\mathbf{x}^{T} \mathbf{y}\right), \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{S}^{2}
$$

- So, standard RBF methods can be used for problems on the sphere \mathbb{S}^{2}.
- Cheney (1995) appears to have been the first to mathematically study the specialization of RBFs to the sphere. Many others have followed suit, e.g. Fasshauer \& Schumaker (1998); Baxter \& Hubbert (2001); Levesley \& Hubbert (2001); Hubbert \& Morton (2004); zu Castel \& Filbir (2005); Narcowich, Sun, \& Ward (2007); Narcowich, Sun, Ward, \& Wendland (2007); Fornberg \& Piret (2007); Narcowich, Ward, \& W (2007); Fuselier, Narcowich, Ward, \& W (2009); Fuselier \& W (2009)

Restricted radial kernels

- Any (conditionally) positive definite radial kernel ϕ on \mathbb{R}^{3} is also (conditionally) positive definite on \mathbb{S}^{2}.
- In fact, they are (conditionally) positive definite zonal kernels, since

$$
\phi(\|\mathbf{x}-\mathbf{y}\|)=\phi\left(\sqrt{2-2 \mathbf{x}^{T} \mathbf{y}}\right)=\psi\left(\mathbf{x}^{T} \mathbf{y}\right), \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{S}^{2}
$$

- So, standard RBF methods can be used for problems on the sphere \mathbb{S}^{2}.
- Cheney (1995) appears to have been the first to mathematically study the specialization of RBFs to the sphere. Many others have followed suit, e.g. Fasshauer \& Schumaker (1998); Baxter \& Hubbert (2001); Levesley \& Hubbert (2001); Hubbert \& Morton (2004); zu Castel \& Filbir (2005); Narcowich, Sun, \& Ward (2007); Narcowich, Sun, Ward, \& Wendland (2007); Fornberg \& Piret (2007); Narcowich, Ward, \& W (2007); Fuselier, Narcowich, Ward, \& W (2009); Fuselier \& W (2009)
- Open question (Baxter \& Hubbert (2001)): Are there any advantages to using a purely PD or CPD zonal kernel to a restricted PD or CPD radial kernel?
- In this workshop we will focus on restricted radial kernels.

References for ZBF or SBF method

- For details on interpolation with more general zonal kernels, see

- Also see the supplementary lecture slides.

Error estimates

- Goal: Present some known results on error estimates for RBF interpolants on the sphere for target function of various smoothness.
- The supplementary lecture slides contain many of the technical details including:
- Reproducing kernel Hilbert spaces (RKHS)
- Sobolev spaces on \mathbb{S}^{2};
- Native spaces;
- Brief historical notes regarding error estimates:
- Earliest results appear to be Freeden (1981), but do not depend on ψ or target.
- First Sobolev-type estimates were given in Jetter, Stöckler, \& Ward (1999).
- Since then many more results have appeared, e.g.

Levesley, Light, Ragozin, \& Sun (1999), v. Golitschek \& Light (2001), Morton \& Neamtu (2002), Narcowich \& Ward (2002), Hubbert \& Morton (2004,2004), Levesley \& Sun (2005), Narcowich, Sun, \& Ward (2007), Narcowich, Sun, Ward, \& Wendland (2007), Sloan \& Sommariva (2008), Sloan \& Wendland (2009), Hangelbroek (2011).

Geometric properties of node sets

- The following properties for node sets on the sphere appear in the error estimates:
- Mesh norm

$$
h_{X}=\sup _{\mathbf{x} \in \mathbb{S}^{2}} \operatorname{dist}_{\mathbb{S}^{2}}(\mathbf{x}, X)
$$

- Separation radius

$$
q_{X}=\frac{1}{2} \min _{i \neq j} \operatorname{dist}_{\mathbb{S}^{2}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- Mesh ratio

(Only part of the sphere is shown)

$$
\rho_{X}=\frac{h_{X}}{q_{X}}
$$

Interpolation error estimates

- We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, \& Ward (1999), Morton \& Neamtu (2002), Hubbert \& Morton (2004,2004), Narcowich, Sun, Ward, \& Wendland (2007)

Notation:

- ϕ is a restricted radial kernel
- $\hat{\phi}(\omega) \sim\left(1+\|\omega\|_{2}^{2}\right)^{-(\tau+1 / 2)}, \tau>1$ • $h_{X}=$ mesh-norm
- $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$
- $q_{X}=$ separation radius
- $I_{X} f$ is RBF interpolant of $\left.f\right|_{X}$ - $\rho_{X}=h_{X} / q_{X}$, mesh ratio

Theorem. Target function as smooth as the kernel
If $f \in H^{\tau}\left(\mathbb{S}^{2}\right)$ then $\left\|f-I_{X} f\right\|_{L_{p}\left(\mathbb{S}^{2}\right)}=\mathcal{O}\left(h_{X}^{\tau-2(1 / 2-1 / p)+}\right)$ for $1 \leq p \leq \infty$. In particular,

$$
\begin{aligned}
\left\|f-I_{X} f\right\|_{L_{1}\left(\mathbb{S}^{2}\right)} & =\mathcal{O}\left(h_{X}^{\tau}\right) \\
\left\|f-I_{X} f\right\|_{L_{2}\left(\mathbb{S}^{2}\right)} & =\mathcal{O}\left(h_{X}^{\tau}\right) \\
\left\|f-I_{X} f\right\|_{L_{\infty}\left(\mathbb{S}^{2}\right)} & =\mathcal{O}\left(h_{X}^{\tau-1}\right)
\end{aligned}
$$

Interpolation error estimates

- We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, \& Ward (1999), Morton \& Neamtu (2002), Hubbert \& Morton (2004,2004), Narcowich, Sun, Ward, \& Wendland (2007)

Notation:

- ϕ is a restricted radial kernel
- $\hat{\phi}(\omega) \sim\left(1+\|\omega\|_{2}^{2}\right)^{-(\tau+1 / 2)}, \tau>1$ • $h_{X}=$ mesh-norm
- $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$
- $I_{X} f$ is RBF interpolant of $\left.f\right|_{X}$ - $\rho_{X}=h_{X} / q_{X}$, mesh ratio

Theorem. Target functions twice as smooth as the kernel

$$
\text { If } f \in H^{2 \tau}\left(\mathbb{S}^{2}\right) \text { then }\left\|f-I_{X} f\right\|_{L_{p}\left(\mathbb{S}^{2}\right)}=\mathcal{O}\left(h_{X}^{2 \tau}\right) \text { for } 1 \leq p \leq \infty .
$$

Remark. Known as the "doubling trick" from spline theory. (Schaback 1999)

Interpolation error estimates

- We start with known error estimates for kernels of finite smoothness.

Jetter, Stöckler, \& Ward (1999), Morton \& Neamtu (2002), Hubbert \& Morton (2004,2004), Narcowich, Sun, Ward, \& Wendland (2007)

Notation:

- ϕ is a restricted radial kernel
- $\hat{\phi}(\omega) \sim\left(1+\|\omega\|_{2}^{2}\right)^{-(\tau+1 / 2)}, \tau>1$ • $h_{X}=$ mesh-norm
- $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$
- $I_{X} f$ is RBF interpolant of $\left.f\right|_{X} \quad$ - $\rho_{X}=h_{X} / q_{X}$, mesh ratio

Theorem. Target functions rougher than the kernel.
If $f \in H^{\beta}\left(\mathbb{S}^{2}\right)$ for $\tau>\beta>1$ then $\left\|f-I_{X} f\right\|_{L_{p}\left(\mathbb{S}^{2}\right)}=\mathcal{O}\left(\rho^{\tau-\beta} h_{X}^{\tau-2(1 / 2-1 / p)_{+}}\right)$ for $1 \leq p \leq \infty$.

Remark.
(1) Referred to as "escaping the native space". (Narcowich, Ward, \& Wendland (2005, 2006)).
(2) These rates are the best possible.

Interpolation error estimates

- Example values of τ for some radial kernels:

Name	RBF (use $r=\sqrt{2-2 t}$ to get SBF ψ)	τ
Matern	$\phi_{2}(r)=e^{-\varepsilon r}$	1.5
TPS (1)	$\phi(r)=r^{2} \log (r)$	2
Cubic	$\phi(r)=r^{3}$	2
TPS (2)	$\phi(r)=r^{4} \log (r)$	3
Wendland	$\phi_{3,2}(r)=(1-\varepsilon r)_{+}^{6}\left(3+18(\varepsilon r)+15(\varepsilon r)^{2}\right)$	3.5
Matern	$\phi_{5}(r)=e^{-\varepsilon r}\left(15+15(\varepsilon r)+6(\varepsilon r)^{2}+(\varepsilon r)^{3}\right)$	4.5

- For infinitely smooth kernels $\hat{\phi}$ decays faster than any polynomial power, and special error estimates are required.
- In this case the target functions have to be very smooth $\left(C^{\infty}\left(\mathbb{S}^{2}\right)\right)$.

Interpolation error estimates

- Error estimates for infinitely smooth kernels (e.g. Gaussian, inverse multiquadric). Jetter, Stöckler, \& Ward (1999)

Notation:

- ϕ is a restricted radial kernel
- $\hat{\phi}(\omega)$ decays faster than any polynomial power
- $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$
- $I_{X} f$ is RBF interpolant of $\left.f\right|_{X}$

Theorem. Target function as smooth as the kernel
If $f \in \mathcal{N}_{\phi}\left(\mathbb{S}^{2}\right)$ then $\left\|f-I_{X} f\right\|_{L_{\infty}\left(\mathbb{S}^{2}\right)}=\mathcal{O}\left(h_{X}^{-1} \exp \left(-\alpha / 2 h_{X}\right)\right)$, for some $\alpha>0$ that depends on ϕ.

Remarks:

(1) This is called spectral (or exponential) convergence.
(2) Function space may be small, but does include all band-limited functions.
(3) Only known result I am aware of (too bad there are not more).
(4) Numerical results indicate convergence is also fine for less smooth functions.

Optimal nodes

- If one has the freedom to choose the nodes, then the error estimates indicate they should be roughly as evenly spaced as possible.

Swinbank \& Purser (2006)
Minimum energy $s=2$

Hardin \& Saff (2004) Riesz energy: $\|\mathbf{x}-\mathbf{y}\|_{2}^{-s}$

Saff \& Kuijlaars (1997)
Maximal determinant

Womersley \& Sloan (2001)

- Smooth kernels with a shape parameter.

$$
\underline{\text { Ex: }} \quad \phi(r)=\exp \left(-(\varepsilon r)^{2}\right) \quad \phi(r)=\frac{1}{\sqrt{1+(\varepsilon r)^{2}}} \quad \phi(r)=\sqrt{1+(\varepsilon r)^{2}}
$$

Issue: Effect of decreasing ε leads to severe ill-conditioning of interp. matrices

Basis functions get flatter as $\varepsilon \longrightarrow 0$

Linear system for determining the interpolation coefficients

$$
\underbrace{\left[\begin{array}{ccc}
\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{N}\right\|\right) \\
\phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{N}\right\|\right) \\
\vdots & \vdots & \ddots \\
\phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{N}\right\|\right)
\end{array}\right]}_{A_{X}} \underbrace{\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]}_{\underline{c}}=\underbrace{\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]}_{\underline{f}} \begin{aligned}
& A_{X} \text { is guaranteed to be } \\
& \text { positive definite if } \\
& \phi \text { is positive definite. } \\
& \text { RBF-Direct }
\end{aligned}
$$

RBF interpolant: $\quad I_{X, \varepsilon} f(\mathbf{x})=\sum_{j=1}^{N} c_{j}(\varepsilon) \phi_{\varepsilon}\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)$
Theorem (Driscoll \& Fornberg (2002)). For N nodes in 1-D, the RBF interpolant (for certain smooth kernels) converges to the standard Lagrange interpolant as $\varepsilon \longrightarrow 0$ (flat limit)

- Higher dimensions: Limit usually exits and takes the form of a multivariate polynomial as $\varepsilon \longrightarrow 0$.
- Fornberg, W, \& Larsson (2004), Larsson \& Fornberg (2005), Schaback (2005,2006), Lee, Yoon, \& Yoon (2007)
- In the case of the Gaussian kernel, the interpolant always converges to the de Boor \& Ron "least polynomial interpolant".
- Sphere: Limit (usually) exits and converges to a spherical harmonic interpolant (Fornberg \& Piret (2007)).

Base vs. space

- Key observation: The space spanned by linear combinations of positive definite radial kernels (in \mathbb{R}^{d} or \mathbb{S}^{2}) is good for approximation BUT, the standard basis $\left\{\phi\left(\cdot, \mathbf{x}_{1}\right), \ldots, \phi\left(\cdot, \mathbf{x}_{N}\right)\right\}$ can be problematic.
Analogy:
(Fornberg)

Vectors
Bad basis for \mathbb{R}^{2}

Bad basis: $x^{n}, n=0,1, \ldots$

Splines

Truncated powers: $(x)_{+}^{3}$

Good basis for \mathbb{R}^{2}

Chebyshev basis: $T_{n}(x), n=0,1, \ldots$

Bspline basis: $b_{3}(x)$

Using a bad basis for flat kernels:

Error vs Shape Parameter
Smooth RBF

Using a good basis for flat kernels:

Error vs Shape Parameter

Uncertainty principle misconception

- Schaback's uncertainty principle:

Principle: One cannot simultaneously achieve good conditioning and high accuracy.
Misconception: Accuracy that can be achieved is limited by ill-conditioning.
Restatement:
One cannot simultaneously achieve good conditioning and high accuracy when using the standard basis.

- It's a matter of base vs. space.
- Literature for interpolation with "flat" kernels is growing:

Theory: Driscoll \& Fornberg (2002)
Larsson \& Fornberg (2003; 2005)
Fornberg, Wright, \& Larsson (2004)
Schaback (2005; 2008)
Platte \& Driscoll (2005)
Fornberg, Larsson, \& Wright (2006)
deBoor (2006)
Fornberg \& Zuev (2007)
Lee, Yoon, \& Yoon (2007)
Fornberg \& Piret (2008)
Buhmann, Dinew, \& Larsson (2010)
Platte (2011)
Song, Riddle, Fasshauer, \& Hickernell (2011)

Stable Fornberg \& Wright (2004)
algorithms: Fornberg \& Piret (2007)
Fornberg, Larsson, \& Flyer (2011)
Fasshauer \& McCourt (2011)
Gonnet, Pachon, \& Trefethen (2011)
Pazouki \& Schaback (2011)
De Marchi \& Santin (2013)
Fornberg, Letho, Powell (2013)
Wright \& Fornberg (2013)

RBF-QR Algorithm

- RBF-QR algorithm developed by Fornberg and Piret allows one to stably compute "flat" kernel interpolants on the sphere.
- Idea is to create a new basis for the space spanned by shifts of a smooth radial kernel that removes the problems with small shape parameters (see supplementary lecture material for details).
- One can reach full numerical precision when interpolating a function using this procedure (for smooth enough target functions and large enough N)
- It is more expensive than standard approach (RBF-Direct).
- Work has gone into extending this idea to general Euclidean space, but the procedure is much more complicated.
- Matlab Code for RBF-QR is provided in the rbfsphere package.
- See Problem 2

Concluding remarks

- This was general background material for getting started in this area.
- There is still much more to learn and many interesting problems:
- Approximation (and decomposition) of vector fields.
- Fast algorithms for interpolation using localized bases
- Numerical integration
- RBF generated finite differences
- RBF partition of unity methods
- Numerical solution of partial differential equations on spheres.
- Generalizations to other manifolds.
* If you have any questions or want to chat about research ideas, please come and talk to me.

