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Part 1 

●  Scattered data interpolation in   
●  Positive definite radial kernels: radial basis functions (RBF) 
●  Some theory 

●  Scattered data interpolation on the sphere  
●  Positive definite (PD) zonal kernels 
●  Brief review of spherical harmonics 
●  Characterization of PD zonal kernels 
●  Conditionally positive definite zonal kernels 
●  Examples 

●  Error estimates: 
●  Reproducing kernel Hilbert spaces 
●  Sobolev spaces 
●  Native spaces 
●  Geometric properties of node sets 

●  Optimal nodes on the sphere 

Overview  



Part 1 
Grids, meshes, nodes, used for spherical geometries 
•  Some examples of grids/meshes/nodes used in numerical methods: 

tions for the Northern and Southern hemi-
spheres, and a Mercator projection for the
equatorial band, and applied second-order fi-
nite differences to uniform grids on each projec-
tion. Values needed for the approximations at
points not included in the computational grid
of one projection were obtained by interpolation
within the grid of another projection. Figure 2
shows a composite grid consisting of a North
Polar and a South Polar stereographic grid
projected back to the surface of the sphere to
illustrate the overlap. Note, this grid does not
include the equatorial Mercator projection
included by Phillips (1957). Although Phillips
(1962) showed that with careful definition of
the finite-difference scheme and interpolation
procedures the composite mesh approach could
give good results, his approach never gained
popularity. Conservation aspects of composite
meshes were revisited by Stoker and Isaacson
(1975) with the addition of a conserving tech-
nique for the interpolations (Bayliss and Isaac-
son 1975; Sasaki 1976). Again composite
meshes were not adopted for a complete baro-
clinic model, perhaps because of lingering con-
cerns about conservation and noise on the part
of practitioners of that time given the very
large investment needed to develop a complete
baroclinic model.

Sadourny (1972) developed a method to cover
the sphere with several non-conformal projec-
tions which required no interpolations between
meshes. It is based on a regular polyhedron cir-
cumscribed to the sphere. A coordinate system
is derived for each face for a gnomonic or cen-
tral projection. He tested this approach with a
cube for the polyhedron in which case the sides
of the polyhedral faces are coordinate lines and
grid points are common to the two sides defin-
ing the edge. Such a system is illustrated in
Fig. 3. Finite differences were developed at the
boundaries from flux or conservation considera-
tions so no interpolations were necessary to ob-
tain information from adjacent faces. He en-
countered a diffculty with two-grid interval
noise arising from the boundaries where it is
difficult to maintain the accuracy of the interior
scheme.

As mentioned above, the pole problem with
spherical coordinates is primarily and economic
one, not a technical problem. Explicit finite dif-
ference schemes have a restriction on the time
step related to the wind speed and the grid in-
terval. Essentially the time step must be small
enough that the advection or wave propagation
remains within the grid stencil used by the fi-
nite differences. The relation between the wind
speed, grid length and time step is referred to
as the Courant-Fredrich-Levy or CFL condi-
tion, after the mathematicians who first de-

Fig. 2. A composite or overset grid con-
sisting of uniform grids on a North
Polar and a South Polar stereographic
projection. The meshes on the projec-
tions are mapped back to the surface of
the sphere to illustrate the overlap.

Fig. 3. A ‘‘cubed sphere’’ grid obtained by
projecting a Cartesian coordinate sys-
tem on each face of a cube onto the sur-
face of the sphere.
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development into explicit grid-point approxi-
mations dropped dramatically. Spectral trans-
form became the method of choice for both
NWP and climate models and dominated the
field, although they were not universally
adopted and a few notable examples of grid-
point models continued to be applied.

The introduction of the spectral transform
method by Eliasen et al. (1970) and Orszag
(1970) made the spectral method cost effective.
The spectral transform method represents
fields by a series of spherical harmonics. Linear
terms are calculated directly in spectral space
while nonlinear terms are calculated from grid
point values obtained by synthesizing the field
from the spectral coefficients. The results of
the nonlinear calculations are transformed
back to spectral space. Machenhaur (1979) pro-
vides an excellent review of the method.

The spectral transform method calculates
linear advection of a resolved field exactly ex-
cept for time truncation, so there is no compu-
tational dispersion. With triangular spectral

truncation it presents a natural filter for spher-
ical geometry by providing an isotropic repre-
sentation in spectral space even though the
computationally adopted underlying Gaussian
grid does not. Since it is based on an isotropic
representation, short longitudinal structures
near the pole are not present and therefore do
not restrict the time step. Application of a qua-
dratic unaliased transform grid provides a nat-
ural way to eliminate aliasing of quadratic
terms and thus makes the method immune to
nonlinear instability, although that problem
had also been solved in grid point models by
Arakawa (1966) type differences. Unlike grid-
point schemes, the spectral transform method
does not have a number of arbitrary parame-
ters to define it and its application to global
atmospheric models became amazingly stan-
dard following Bourke’s (1974) implementation.
More recently Swarztrauber (1996) compared
the accuracy of nine spectral transform meth-
ods for solving the shallow water equations.
They vary by being based on the shallow water
equations written in different forms. Eight of
the methods compute almost identical results
with standard test cases. For practical pur-
poses the ninth is also comparable to the others.

The spectral transform method became domi-
nant at that time when the modeling issues
consisted primarily of large scale, relative
smooth dynamical motions. It provided a very
elegant solution to sphere problem. It also has
advantages at the relatively low resolution
used for climate modeling at that time: linear
advection is accurate to the truncation limit un-
like grid-point schemes which in general damp
short wave rather severely and in addition can
have significant phase errors. Of course the
spectral transform method could not properly
capture the nonlinear interactions at scales
near the truncation limit, but then no scheme
does.

To indicate the continuing popularity of the
spectral transform method until recently we
compare its use to that of grid point methods
in recent production models. The spectral
transform method is the basis of 11 out of 14 re-
cent operational global NWP systems, the re-
maining 3 are grid point based (WGNE 2005,
Appendix E). Concerning models applied to cli-
mate simulation, in AMIP I, which was carried
out from 1990 to 1996 (Gates 1995; Gates et al.

Fig. 5. A spherical geodesic or icosahe-
dral grid obtained by subdividing the
twenty triangles of an icosahedron into
smaller triangles. The twenty icosahe-
dral triangles are indicated by the
thicker solid lines. Each of these trian-
gles is divided into four smaller trian-
gles indicated by the dashed lines
combined with the thicker solid lines.
These are further divided into four tri-
angles indicated by the thiner solid
lines.
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rable order. With several test cases for the
shallow water equations, they compared it to
the common spectral transform method based
on scalar spherical harmonics and a spectral
transform method based on vector spherical
harmonics. They did not develop a baroclinic

model however. Dudhia and Bresch (2002) cre-
ated a global version of the PSU-NCAR Meso-
scale Model (MM5) by using two stereographic
grids, each centered on one of the two poles
and covering that hemisphere. They used bilin-
ear interpolation. Neither of these approaches
strove to preserve conservation with the inter-
polations. The bilinear interpolation applied in
the later is rather damping and may help pre-
vent noise from forming. The mean precipita-
tion in a long run of latter appeared to be noise
free. However, there remains the concern that
noise will develop in a baroclinic model with
higher order interpolation and with strong pa-
rameterized forcings in the region of overlap.

A very different type of composite mesh has
been proposed recently. Kageyama and Sato
(2004) suggested a quasi-uniform composite
mesh for spherical geometry without singular
points which they named the ‘‘Yin-Yang’’ grid.
A similar grid system was introduced inde-
pendently by Purser (presented at the Work-
shop on the Solution of Partial Differential
Equations on the Sphere, 20–23 July 2004, Yo-
kohama, Japan). The Yin-Yang grid consists of
two notched latitude-longitude grids which are
normal to each other. Each of the two compo-
nents is based on a low-latitude piece of a
latitude-longitude grid on the sphere, with a
gap in longitude. One component, the Yin grid
illustrated in Fig. 6a, is oriented as the tradi-
tional latitude-longitude grid, the other, the
Yang grid illustrated in Fig. 6b, is rotated 90
degrees to fill the gap in the first and to cover
the polar regions left open in the first. The do-
main of the two grids, the Yin-Yang grid illus-
trated in Fig. 6c, looks much like the cover of a
tennis ball or baseball, but with overlap at the
seams. Since the two components are based on

Fig. 6. (a) A Yin grid, a low-latitude
latitude-longitude grid with a gap in
longitude oriented as the traditional
latitude-longitude grid. (b) A Yang
grid, the Yin grid rotated 90 degrees to
fill the gap in the Yin grid and to cover
the polar regions left open in the Yin
grid. The gap is on the back side. (c) A
Yin-Yang grid, the combination of the
Yin and Yang grids showing the overlap
of the two grids.
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Table 3.1 The ratios of largest to smallest grid cells for the N × N circular disk grid mappings.
The ratios for the polar grid were computed analytically. The areas of cells in the ghost
cell region are not included for any grids.

Cell ratios on the disk

N Polar grid Radial proj. Constant curv. Convex combi.

100 199 1.979899 1.966483 3.117242
400 799 1.994994 1.991504 3.158103

1600 3199 1.998750 1.997869 3.168213

Table 3.1 gives the ratios of the largest to the smallest grid cell for several quadri-
lateral grids of the disk described above. For comparison we also give the ratios of
the polar grid.

4. Grids on the Surface of a Sphere. If the mapping of section 3.2 with the
choice (3.4) is used, then the grid shown in Figure 3.2(c) is obtained. If we now set

zp = sqrt(1 - (xp.ˆ2 + yp.ˆ2))

then the points (xp,yp,zp) lie on the upper hemisphere. We can apply a similar
mapping to points in the computational domain [−3,−1]× [−1, 1] to map these points
to the lower hemisphere. The two mappings together map the rectangle [−3, 1]×[−1, 1]
to the surface of the sphere. Figure 4.1(a) shows the resulting grid. This is easily
accomplished in MATLAB by

function [xp,yp] = mapc2p(xc,yc)
ijlower = find(xc<-1); % indices of points on lower hemisphere
xc(ijlower) = -2 - xc(ijlower); % flip across the line x = -1
% compute xp and yp by mapping [-1,1]x[-1,1] to the unit circle
% using the mapping of section 3.2 with (3.4)
zp = sqrt(1 - (xp.ˆ2 + yp.ˆ2));
zp(ijlower) = -zp(ijlower); % negate z in lower hemisphere

Proper communication of data between the hemispheres requires that periodic
boundary conditions be used in the x direction and that appropriate boundary condi-
tions be used along the top and bottom of the rectangular domain where the segment
−3 < x < −1 is connected to the segment −1 < x < 1 at the same boundary. These

(a) (b)

Fig. 4.1 (a) 40 × 20 grid on the surface of the sphere. (b) 40 × 20 × 4 grid in a spherical shell.

●  Methods used:  
o  Finite-difference, finite-element, finite-volume, semi-Lagrangian 
o  Double Fourier, spherical harmonics, spectral elements, discontinuous 

Galerikin (DG), and radial basis functions (RBF) 



Part 1 
Overview of some high-order methods for the sphere 
Spherical harmonics (SPH):  
Expand solution in a set of orthogonal trig-like basis functions 
which give an entirely uniform resolution over the sphere. 
Strengths: Exponential accuracy   
Weakness: No practical option for local mesh refinement, 

Relatively high computational cost, 
Poor scalability on massively parallel machines 

Double Fourier series (SPH):  

Strengths: Exponential accuracy, 
Computationally fast due to FFT 

Weakness: No option for local mesh refinement 

Spectral elements 
Map sphere to a cube. 
Form elements on each 
face of cube. 
Approximate on elements. 

Strengths:  
Accuracy approaching exponential, 
Local mesh refinement feasible, 
Scalable on massively parallel machines, 
Mass conserving (DG) 
Weakness:  
Loss of efficiency due to unphysical element boundaries, 
Restrictive time-stepping due to clustered grids, 
High algorithmic complexity, and preprocessing cost 



Part 1 RBFs for the sphere 
Strengths:  
•  High-order, even exponential, accuracy 
•  No grids or meshes: nodes can be scattered 
•  Local refinement is feasible 
•  No unphysical boundaries 
•  No unphysical clustering of nodes, allowing large time-steps for purely 

hyperbolic problems. 
•  No coordinate singularities to worry about 
•  Scalable on massively parallel machines (when using “local methods”) 
•  Generalizes easily to other surfaces: 
 
 
 
 
 
 
Weakness:  
•  Tuning of “shape parameter” is required 
•  Special algorithms required for small shape parameters 
•  Tuning of stabilization parameter for purely hyperbolic problems is required 
•  No inherent conservation 



Part 1 Applications of RBF methods on the sphere 
●  A visual overview: 

Shallow water flows:  
numerical weather prediction 

Rayleigh-Bénard convection:  
Mantle convection 

Vector fields on the sphere: 
Helmholtz decomposition 

Numerical  
integration 

Pattern formation:  
Turing systems Geometric modeling 



Part 1 RBF References 

1999	   2003	  

2005	   2007	  

2004	  

A Primer on 
Radial Basis 

Functions with 
Applications to 
the Geosciences 

 
Bengt Fornberg 
Natasha Flyer	  

2014:	  SIAM	  

●  Many good books to consult on RBF theory and applications: 



Part 1 Interpolation in 1-D with polynomials 
•  Orthogonal polynomial basis functions:  

Increasingly oscillatory as the degree increases  
Data can be sampled at 
 
1)  Equally spaced points: 

2)  Boundary clustered points: 

3)  Irregular spaced points: 

Expansion 
coefficients: System is  

non-singular 
provided the  
nodes are distinct 



Part 1 Polynomial interpolation in higher dimensions 
•  Tensor product grids:  

Equally spaced Boundary clustered Irregular Polar grid: 

Use standard 1-D interpolation in each direction and combine as a tensor product. 

•  What happens for scattered data? 

Expansion coefficients: 

x 

y 

Depending on nodes, the system can be singular 



Part 1 Polynomial interpolation in higher dimensions 
•  Tensor product grids:  

Equally spaced Boundary clustered Irregular Polar grid: 

Use standard 1-D interpolation in each direction and combine as a tensor product. 

•  What happens for scattered data? 

x 

y 

•  Can triangulate the nodes and use splines. 

•  Achieving high orders of accuracy then 
becomes and difficult/impossible. 

•  Extensions to higher dimensions becomes 
increasingly complex. 



Part 1 Interpolation with kernels 

Examples: 



Part 1 Interpolation with kernels 
Examples: 



Part 1 Interpolation with kernels 



Part 1 Interpolation with kernels 



Part 1 RBF interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 
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Part 1 RBF interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 



Part 1 RBF interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 



Part 1 RBF interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 



Part 1 RBF interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 

Linear system for determining the interpolation coefficients 



Part 1 Positive definite radial kernels 
●  Important result on positive definite kernels: 



Part 1 Positive definite radial kernels 

Gaussian Inverse multiquadric 

�(r) = exp(�("r)2)

Inverse quadratic 



Part 1 Positive definite radial kernels 

Matérn 

Wendland (1995) 

Truncated powers 

J-Bessel 

Finite-smoothness Infinite-smoothness 

Platte 



Part 1 Conditionally positive definite kernels 
●  Discussion thus far does not cover many important radial kernels: 

●  These can covered under the theory of conditionally positive definite kernels. 

●  CPD kernels can be characterized similar to PD kernels but, using 
generalized Fourier transforms; see Ch. 8 Wendland 2005 for details. 

●  See the supplementary lecture slides for details for a characterization of 
these kernels. 

Cubic Thin plate spline Multiquadric 

Cubic spline in 1-D Generalization of energy 
minimizing spline in 2D 

Popular kernel and first used in 
any RBF application; Hardy 1971 



Part 1 Conditionally positive definite kernels 
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Part 1 Conditionally positive definite kernels 



Part 1 Conditionally positive definite kernels 



Part 1 Conditionally positive definite kernels 



Part 1 Conditionally positive definite kernels 



Part 1 Interpolation with kernels (revisited) 



Part 1 Interpolation with kernels on the sphere 



Part 1 SBF interpolation 
Key idea: linear combination of translates 
and rotations of a single zonal kernel on  
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Part 1 SBF interpolation 
Key idea: linear combination of translates 
and rotations of a single zonal kernel on  



Part 1 SBF interpolation 
Key idea: linear combination of translates 
and rotations of a single zonal kernel on  

Linear system for determining the interpolation coefficients 



Part 1 Positive definite zonal kernels 



Part 1 Positive definite zonal kernels 



Part 1 Positive definite zonal kernels 



Part 1 Conditionally positive definite zonal kernels 



Part 1 Conditionally positive definite zonal kernels 



Part 1 Conditionally positive definite zonal kernels 



Part 1 Restricted radial kernels 



Part 1 Restricted radial kernels 



Part 1 References for ZBF or SBF method 

●  For details on interpolation with more general zonal kernels, see 

●  Also see the supplementary lecture slides. 



Part 1 Error estimates 



Part 1 Geometric properties of node sets 
●  The following properties for node sets on the sphere appear in the 

error estimates: 

(Only part of the sphere is shown) 



Part 1 Interpolation error estimates 

Theorem. Target function as smooth as the kernel 

Notation: 

●  We start with known error estimates for kernels of finite smoothness. 



Part 1 Interpolation error estimates 

Theorem. Target functions twice as smooth as the kernel 

Notation: 

●  We start with known error estimates for kernels of finite smoothness. 

Remark. Known as the “doubling trick” from spline theory.  (Schaback 1999) 



Part 1 Interpolation error estimates 

Notation: 

●  We start with known error estimates for kernels of finite smoothness. 

Remark.  
(1)  Referred to as “escaping the native space”. (Narcowich, Ward, & Wendland (2005, 2006)). 

(2)  These rates are the best possible. 

Theorem. Target functions rougher than the kernel. 



Part 1 Interpolation error estimates 



Part 1 Interpolation error estimates 
●  Error estimates for infinitely smooth kernels (e.g. Gaussian, inverse multiquadric). 

Remarks: 
(1)  This is called spectral (or exponential) convergence. 
(2)  Function space may be small, but does include all band-limited functions. 
(3)  Only known result I am aware of (too bad there are not more). 
(4)  Numerical results indicate convergence is also fine for less smooth functions. 

Notation: 

Theorem. Target function as smooth as the kernel 



Part 1 Optimal nodes 
●  If one has the freedom to choose the nodes, then the error estimates 

indicate they should be roughly as evenly spaced as possible. 
Icosahedral  Fibonacci Equal area 

Minimum energy s=2 Minimum energy, s=3 Maximal determinant 

Swinbank & Purser (2006) Saff & Kuijlaars (1997) 

Hardin & Saff (2004) Womersley & Sloan (2001) 

Examples: 
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Part 1 What about the shape parameter? 
●  Smooth kernels with a shape parameter. 

�(r) = exp(�("r)2)Ex: 

Linear system for determining the interpolation coefficients 

RBF-Direct 



Part 1 RBF interpolation in the “flat” limit 

RBF interpolant: 



Part 1 Base vs. space 

Analogy:  
(Fornberg) 

Vectors	  

Polynomials	  

Splines	  



Part 1 Using a bad basis for flat kernels: 



Part 1 Using a good basis for flat kernels: 



Part 1 Uncertainty principle misconception 
●  Schaback’s uncertainty principle: 
 

    Principle: One cannot simultaneously achieve good conditioning  
                 and high accuracy. 
    Misconception: Accuracy that can be achieved is limited by ill-conditioning. 
 

    Restatement: 
    One cannot simultaneously achieve good conditioning and high accuracy  

    when using the standard basis. 
 

●  It’s a matter of base vs. space. 
●  Literature for interpolation with “flat” kernels is growing: 

Driscoll & Fornberg (2002) 
Larsson & Fornberg (2003; 2005) 
Fornberg, Wright, & Larsson (2004) 
Schaback (2005; 2008) 
Platte & Driscoll (2005) 
Fornberg, Larsson, & Wright (2006) 
deBoor (2006) 
Fornberg & Zuev (2007) 
Lee, Yoon, & Yoon (2007) 
Fornberg & Piret (2008) 
Buhmann, Dinew, & Larsson (2010) 
Platte (2011) 
Song, Riddle, Fasshauer, & Hickernell (2011) 

Fornberg & Wright (2004) 
Fornberg & Piret (2007) 
Fornberg, Larsson, & Flyer (2011) 
Fasshauer & McCourt (2011) 
Gonnet, Pachon, & Trefethen (2011) 
Pazouki & Schaback (2011) 
De Marchi & Santin (2013) 
Fornberg, Letho, Powell (2013) 
Wright & Fornberg (2013) 

Theory: Stable 
algorithms: 



Part 1 RBF-QR Algorithm 
●  RBF-QR algorithm developed by Fornberg and Piret allows one to stably 

compute “flat” kernel interpolants on the sphere. 

●  Idea is to create a new basis for the space spanned by shifts of a smooth 
radial kernel that removes the problems with small shape parameters (see 
supplementary lecture material for details). 

●  One can reach full numerical precision when interpolating a function 
using this procedure (for smooth enough target functions and large 
enough N) 

●  It is more expensive than standard approach (RBF-Direct). 

●  Work has gone into extending this idea to general Euclidean space, but 
the procedure is much more complicated. 

●  Matlab Code for RBF-QR is provided in the rbfsphere package. 

●  See Problem 2 



Part 1 Concluding remarks 

Grazie per la vostra attenzione. 

●  This was general background material for getting started in this area. 
●  There is still much more to learn and many interesting problems: 

o  Approximation (and decomposition) of vector fields. 
o  Fast algorithms for interpolation using localized bases 
o  Numerical integration 
o  RBF generated finite differences 
o  RBF partition of unity methods 
o  Numerical solution of partial differential equations on spheres. 
o  Generalizations to other manifolds. 

v  If you have any questions or want to chat about research ideas, please 
come and talk to me. 


