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Overview

Part 1

e Scattered data interpolation in R?
e Positive definite radial kernels: radial basis functions (RBF)
e Some theory
e Scattered data interpolation on the sphere S?
e Positive definite (PD) zonal kernels
e Brief review of spherical harmonics
e C(Characterization of PD zonal kernels
e (onditionally positive definite zonal kernels
e [Lxamples
® [Lirror estimates:
® Reproducing kernel Hilbert spaces
e Sobolev spaces
e Native spaces
e (Geometric properties of node sets

e Optimal nodes on the sphere



Grids, meshes, nodes, used for spherical geometries

Part 1
* Some examples of grids/meshes/nodes used in numerical methods:
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® Methods used:

o Finite-difference, finite-element, finite-volume, semi-Lagrangian

o Double Fourier, spherical harmonics, spectral elements, discontinuous
Galerikin (DG), and radial basis functions (RBF)




Overview of some high-order methods for the sphere |

art 1

Spherical harmonics (SPH):
Expand solution in a set of orthogonal trig-like basis functions

which give an entirely uniform resolution over the sphere.

Strengths: Exponential accuracy

Weakness: No practical option for local mesh refinement,
Relatively high computational cost,
Poor scalability on massively parallel machines

Double Fourier series (SPH):

1\‘ : AN
F Rl Strengths: Exponential accuracy,
Computationally fast due to FFT

Weakness: No option for local mesh refinement

Strengths:

Accuracy approaching exponential,

Local mesh refinement feasible,

Scalable on massively parallel machines,

Mass conserving (DG)

Weakness:

Loss of efficiency due to unphysical element boundaries,
Restrictive time-stepping due to clustered grids,

High algorithmic complexity, and preprocessing cost

Spectral elements /
Map sphere to a cube. |
Form elements on each
face of cube.
Approximate on elements.’




RBFs for the sphere

Part 1

Strengths:

High-order, even exponential, accuracy

No grids or meshes: nodes can be scattered
Local refinement is feasible

No unphysical boundaries

No unphysical clustering of nodes, allowing large time-steps for purely
hyperbolic problems.

No coordinate singularities to worry about

Scalable on massively parallel machines (when using “local methods”)
Generalizes easily to other surfaces:

Weakness:

Tuning of “shape parameter” is required

Special algorithms required for small shape parameters

Tuning of stabilization parameter for purely hyperbolic problems is required
No inherent conservation



Applications of RBF methods on the sphere

Part 1
e A visual overview:
Shallow water flows: Rayleigh-Bénard convection: Numerical
numerical weather prediction ' . .
p Mantle convection integration
Pt "
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Vector fields on the sphere: Pattern formation: . .
Helmholtz decomposition Turing systems Geometric modeling
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RBF References

Part 1

e Many good books to consult on RBF theory and applications:

1999 2003 2004
R : _
A COURSE IN
APPROXIMATION
THEORY - .
Radial Basis
— Functions
i i, snm
Mult;resolution
Methods
in Scattered
Data Modelling
2007 2014: SIAM

Interdisciplinary Mathematical Sciences - Vol. 6

Scattered Data
Approximation

Holger Wendland

the Geosciences

Meshfree Approximation
Methods with MatLAB TR

Gregory E. Fasshauer Natasha Flyer




Interpolation in 1-D with polynomials

Part 1
* Orthogonal polynomial basis functions:
Increasingly oscillatory as the degree increases
Data can be sampled at
.' 1) Equally spaced points:
20 o0 0-0-0 00 0000009
10 2) Boundary clustered points:

00— —0—0—0—0—0—0—0 00

Z 4 n
V w \ — 2 3) Irregular spaced points:
Ve -0 —00—0-0—900—0—00-0—00—9
105 0 o5 g4 05 o 0-5’ ; 0
Legendre Chebyshev
N
Interpolant: INf:chTk(x), Inf =fi, J=0,...,N
=0 L=
Expansion [T (zo) Ti(zo) --- Tn(zo)] [co] [ fo | ,
System is

non-singular
provided the

_TO(iL’N) Ti(zy) -+ Tn(zn)| |en v nodes are distinct

coefficients: | Ty (1)  Ti(z1) -+ Tn(z1)| | @ J1




Polynomial interpolation in higher dimensions

e Tensor product grids:
Boundary clustered

Equally spaced

Irregular

Polar grid:

Use standard 1-D interpolation in each direction and combine as a tensor product.

« What happens for scattered data? N
Interpolant: Inf = Z il (x), INf

P ® ®
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® o e © o L4
®
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X = (2,y)
{T}}+_, some bivariate
polynomial basis

k=0

Expansion coefficients:

_T() (Xo) T1 (Xo)
To(x1) Ti(x1)
| To (;<N) T (;<N)

T'n(x0)
TN (Xl)

TN (.XN ).

CN

= J;

X:Xj

fo
fi

Depending on nodes, the system can be singular

v

Part 1




Polynomial interpolation in higher dimensions,

e Tensor product grids:

Equally spaced Boundary clustered Irregular Polar grid:

Use standard 1-D interpolation in each direction and combine as a tensor product.

« What happens for scattered data?

* Can triangulate the nodes and use splines.

* Achieving high orders of accuracy then
becomes and difficult /impossible.

* Extensions to higher dimensions becomes
increasingly complex.




Interpolation with kernels

Part 1

e Let QCRY and X = {xj}j-v:l a set of nodes on ().

e Consider a continuous target function f : {2 — R sampled at X: f| .
X

Examples:

Q=[-1,1"

N
Kernel interpolant t | I =S e ®(x,
e Kernel interpolan ofX xf ;cj (-, x;)

where @ : {2 X 2 — R and ¢; come from requiring IXf‘X: f}

X



Interpolation with kernels Purt 1

Examples:
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X Y. _O-Sx
Q=[-1,1 o 8F
Kernel interpolant t |: Inf=S c.d( x;
e Kernel interpolan ofX xf ch (-, x;)

e Definition: ® is a positive definite kernel on € if the matrix A = {®(x;,x;)}
is positive definite for any distinct X = {x;}}*; C Q, i.e.
N N
D> bi®(x4,x;5)b; > 0, provided {b;}}Y, # 0.
i=1 j=1
e In this case ¢; are uniquely determined by X and f

X.



Interpolation with kernels

Part 1
e Kernel interpolant to f|X: Ixf =) ;¢P(,%5)
e Some considerations for choosing the kernel ® : 2 x 2 — R

1. The kernel should be easy to compute.

2. The kernel interpolant should be uniquely determined by X and f ’ e

3. The kernel interpolant should accurately reconstruct f.



Interpolation with kernels

Part 1

e Kernel interpolant to f‘ : Ixf =) ;¢P(,%5)
X

e Some considerations for choosing the kernel ® : 2 x 2 — R

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and f ! e

3. The kernel interpolant should accurately reconstruct f.

e For problems like

Good choice: ¢ is a (conditionally) positive definite radial kernel

O(x,x;) = o([|x — x;l2) = ¢(r)
e Leads to RBF interpolation.



RBF interpolation

Part 1
Key idea: linear combination of translates f = {x,;}}L, CcQ, f’ = {fi}X
and rotations of a single radial kernel:
A
o
¢(r) ° J ?
A l® .I
1 ® I Y
AR . iy (]
T q & ol ®
Mo
(A

Basic RBF Interpolant for Q) C R?
Ix f(x ZC] o(l[x = x;l]) .

where Hx — x| = \/(3; — )2+ (y — y;)2




RBF interpolation

Part 1

Key idea: linear combination of translates f X ={x;})L, CcQ, f’ ={f;}L,
and rotations of a single radial kernel: X

o(7)

f 3

T

Basic RBF Interpolant for 2 C R?
N

Ixf(x) = Y ejollx — x)) ’
j=1

where ||x — x| = /(. — ;)2 + (y — y;)?




RBF interpolation

Part 1

Key idea: linear combination of translates f X ={x;})L, CcQ, f’ ={f;}L,
and rotations of a single radial kernel: X

o(7)

f 3

T

Basic RBF Interpolant for 2 C R?
N
Ixf(x) = Y ejollx — x))
j=1

where ||x — x| = /(. — ;)2 + (y — y;)?




RBF interpolation

Part 1

Key idea: linear combination of translates f X ={x;}¥,cQ, f’ ={f;}L,
and rotations of a single radial kernel: X

o(7)

A

T

Basic RBF Interpolant for 2 C R?

Ix f(x) = Z cjo(llx = x;]))

where ||x — x;|| = /(z — z;



RBF interpolation

Part 1

Key idea: linear combination of translates f X ={x;})L, CcQ, f’ ={f;}L,
and rotations of a single radial kernel: X

o(7)

A

T

Basic RBF Interpolant for 2 C R?
N
Ixf(x) = ) ¢;o([lx = x5)
j=1

where ||x — x| = /(. — ;)2 + (y — y;)?




RBF interpolation

Part 1

Key idea: linear combination of translates f X={x;}).,cQ, f|_ ={fHL
and rotations of a single radial kernel: X

o(7)

A

) byl \
.J' /m«‘*'l' iR
P
.l ||\l' g A

T

Basic RBF Interpolant for Q) C R?
Ix f(x ZCJ (IIx = x;1)

where HX — x| = (x —25)2 + (y — y;)?




RBF interpolation

Part 1

Key idea: linear combination of translates f X={x;}).,cQ, f|_ ={fHL
and rotations of a single radial kernel: X

o(7)

A

T

Basic RBF Interpolant for 2 C R?

Ix f(x) = Z cjo(llx = x;]))

Linear system for determining the interpolation coefficients

[ o(|[x1 —x1]]) @([[x1 —x2[]) -~ d(llx1 —xn|) ] [ [ f1] .
¢(llxe —x1]) @(llxa = xall) - -~ ¢(llx2 = xnl]) | | c2 fo| Ax is guaranteed fo be
. . . . positive definite if

¢ is positive definite.

b(lxn — 1) Sllxn —xal) - d(lxw —xxl)] Lew]  Lfw.
N ~— ) S
Ax L S




Positive definite radial kernels

Part 1

e Important result on positive definite kernels:

(General kernel). Let ¢ be a continuous kernel in L;(R?). Then
¢ is positive definite if and only if ¢ is bounded and its d-dimensional
Fourier transform ¢(w) is non-negative and not identically equal to zero.

: Related to Bochner’s theorem (1933). Theorem and proof can be
found in Wendland (2005).

e To make the result specific to radial kernels, we apply the d-dimensional
Fourier transform and use radial symmetry to get (Hankel transform):

o(w) = ¢(|w]2)

/ ST (||w|ot)dt

jwlls

where v = d/2 — 1 and J, is the J-Bessel function of order v.

e Note that if ¢ is positive definite on R? then it is positive definite on
RF for any k < d.



Positive definite radial kernels

Part 1

e Examples of positive definite kernels on R?, for any d

(Gaussian Inverse multiquadric
1 1
0.5} 0.5}
0 : 0 : -
0 0.5 1 0 0.5 1
1
o(r) = exp(—(er)?) o(r)

B v/ 1+ (er)?

0.5}

e ¢ is called the shape parameter (more on this later).

e These kernels are infinitely smooth.

Inverse quadratic

0.5




Positive definite radial kernels

Part 1

e Examples of dimension specific positive definite kernels

Finite-smoothness Infinite-smoothness
Matérn 1 J-Bessel 1
(57")V_d/2Ku—d/2(€T) Jd/z_l(ET’)
05 (Er)d/2 0
PD for 2v > d sin(er)
Ex:e " (r? + 3r + 3) Bx (d=3): er 0
% 05 1 0 05 1
Truncated powers Platte 1
(1—er) (% @)(r)
PD for £ > [d/2] +1 @ is a C°(R) compactly
supported radial function.
0

0 05 PD dimension depends °
Wendland (1995) ; on convolution dimension.

(1-— 5r)ipd,k(5r)
Pd.k 1s a polynomial
whose degree depends >
on d and k.

-

0 0.5

-

5

Ex: (1 —er)i(der + 1) o

0 0.5

-



Conditionally positive definite kernels

Part 1
e Discussion thus far does not cover many important radial kernels:
Cubic Thin plate spline Multiquadric
1 1 2
0.5
0.5 15
0
0 . . . . . 1
0 05 1 0 05 1 15 0 05 1
d(r) =1 ¢(r) =r"logr $(r) = 1+ (er)?
Cubic spline in 1-D Generalization of energy Popular kernel and first used in
minimizing spline in 2D any RBF application; Hardy 1971

e These can covered under the theory of conditionally positive definite kernels.

e (CPD kernels can be characterized similar to PD kernels but, using
generalized Fourier transforms; see Ch. 8 Wendland 2005 for details.

® See the supplementary lecture slides for details for a characterization of
these kernels.



Conditionally positive definite kernels

Part 1

Definition. A continuous radial kernel ¢ : [0, 00) — R is said to be conditionally
positive definite of order k& on R? if, for any distinct X = {x;}_; C R%, and all

b € RV\{0} satisfying
N
> bip(x;) =0
j=1

for all d-variate polynomials of degree < k, the following is satisfied:

N N
NS bigllxi — x;)b; > 0.

i=1 j=1



Conditionally positive definite kernels

Part 1

Definition. A continuous radial kernel ¢ : [0, 00) — R is said to be conditionally
positive definite of order k& on R? if, for any distinct X = {x;}_; C R%, and all

b € RV\{0} satisfying

N
Z bjp(Xj) = O
71=1

for all d-variate polynomials of degree < k, the following is satisfied:

N N
NS bigllxi — x;)b; > 0.

i=1 j=1

e Alternatively, ¢ is positive definite on the subspace Vj,_; C RY:

N
Vi_i=<beRY ijp(xj) =0 for all p € I,y (R?) 5,

g=1

where II,, (R?) is the space of all d-variate polynomials of degree < m.

e The case k = 0, corresponds to standard positive definite kernels on R?.



Conditionally positive definite kernels

Part 1

Definition. Let ¢ : [0,00) — R be continuous and {p;(x)}_; be a basis
for 11 1(Rd) (k > 1). The general RBF interpolant for the dlstlnct nodes
X ={x;}}L, C R? and some target, f, sampled on X, {fi}il, is

d(Ilx —x;) + D depe(x),

=1

Ix f(x

an

where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,4=1,...,n.

j=1
In linear system form, these constraints are

A
oo 5] = 3] where aus = 8(lx: = x50, s = putx



Conditionally positive definite kernels -
Definition. Let ¢ : [0,00) — R be continuous and {p;(x)}_; be a basis

for I;_1(R%) (k > 1). The general RBF interpolant for the distinct nodes

X ={x;}}L, C R? and some target, f, sampled on X, {fi}il, is

Ixf(x o(]1x — x;|) + Zdepe

/=1

an

where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,4=1,....,n

j=1
In linear system form, these constraints are

[};4T ](;] [2] - [%] , where a; ; = ¢([|xi — x;l), pi,e = pr(x:)

(Micchelli (1986)). The above linear system is invertible for any
distinct X, provided

e rank(”) = n (i.e. X is unisolvent on II;_;(R%)),

e ¢ is conditionally positive definite of order k.



Conditionally positive definite kernels o

Definition. Let ¢ : [0,00) — R be continuous and {p;(x)}_; be a basis
for I;_1(R%) (k > 1). The general RBF interpolant for the distinct nodes

X ={x;}}L, C R? and some target, f, sampled on X, {fi}il, is

Ixf(x o(]1x — x;|) + Zdepe

/=1

an

where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,4=1,....,n
j=1
In linear system form, these constraints are

P 0 0

[A P] [2] - F] , where a; ; = ¢(||xs — %5]), pi,e = pr(xi)

Example (Multiquadric, R?). = /1+

e Conditionally positive definite of order 1.

e pi1(x,y,2) = 1.

The system has a unique solution.



Conditionally positive definite kernels o

Definition. Let ¢ : [0,00) — R be continuous and {p;(x)}_; be a basis
for I;_1(R%) (k > 1). The general RBF interpolant for the distinct nodes

X ={x;}}L, C R? and some target, f, sampled on X, {fi}il, is

Ixf(x o(]1x — x;|) + Zdepe

/=1

an

where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,4=1,....,n
j=1
In linear system form, these constraints are

P 0 0

[A P] [2] - F] , where a; ; = ¢(||xs — %5]), pi,e = pr(xi)

Example (Thin plate spline, R3). ¢(r) = r? log(r)
e Conditionally positive definite of order 2.
o pl(xayVZ) — 17 pQ(xawa) = €, p3<xay7 Z) =Y, and p4(xayvz) = <.

The system has a unique solution provided the nodes are not collinear.



Interpolation with kernels (revisited)

Part 1
e Kernel interpolant to f‘X: Ixf =) ;¢P(,%5)
e Some considerations for choosing the kernel ® : 2 x 2 — R

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and f ! e

3. The kernel interpolant should accurately reconstruct f.

e For problems like

Obvious choice: ¢ is a (conditionally) positive definite radial kernel

O(x,x;) = o([|x — x;l2) = ¢(r)
e Leads to RBF interpolation.



Interpolation with kernels on the sphere

Part 1
e Kernel interpolant to f‘X: Ixf =) ;¢P(,%5)
e Some considerations for choosing the kernel ® : 2 x 2 — R

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and f ! e

3. The kernel interpolant should accurately reconstruct f.

e For problems like

Obvious(?) choice: @ is a (conditionally) positive definite zonal kernel:

O(x,x;) = P(x"x;) = Y(t), t € [-1,1]
e Analog of RBF interpolation for the sphere: SBF interpolation.



SBEF' interpolation

Part 1

Key idea: linear combination of translates
and rotations of a single zonal kernel on §?

h(t)

1

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S?
N

Ixf(x) = Z cjw(xij)

j=1

X={x P g =1

\\W//

.

/.// l\\



SBE' interpolation

Part 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {f;}L,
and rotations of a single zonal kernel on §? *

h(t)

1

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S?

Ixf(x) = Z cjw(xij)




SBE' interpolation

Part 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {f;}L,
and rotations of a single zonal kernel on §? *

h(t)

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S?

Ixf(x) = Z cjw(xij)




SBE' interpolation

Part 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {f;}L,
and rotations of a single zonal kernel on §? *

h(t)

1

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S?

Ixf(x) = Z cjzp(Xij)




SBE' interpolation

Part 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {f;}L,
and rotations of a single zonal kernel on §? *

h(t)

1

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S?

Ixf(x) = Z cjzp(Xij)




SBE' interpolation

Part 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {f;}L,
and rotations of a single zonal kernel on §? *

h(t)

1

0.5¢1

Basic SBF Interpolant for S?

Ixf(x) = Z cjzp(Xij)




SBE' interpolation

Part 1
Key idea: linear combination of translates X ={x;}}L, cQ, f = {f;}L,
and rotations of a single zonal kernel on §?
W(t)

1

0.5¢1

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S2

Ix f(x chwx X;)

Linear sVstem for determining the interpolation coeflicients

P(x1x1) P(xix2) - P(xixn) ]| [a f1
¢(X§FX1) w(xg)@). : '¢(XF§FXN) Co fo | Ax is guaranteed to be positive
— . definite if 9 is a positive definite
: : zonal kernel
(xyx1) (xyXa) - v(xyxn)| len] v

N ~~ N~ =
Ax c i



Positive definite zonal kernels

Part 1

Definition. A kernel ¥ : S1 x §9=1 — R is called radial or zonal on
S if U(x,y) = ¢¥(xy), where ¢ : [-1,1] — R. In this case, 9 is simply
referred to as the zonal kernel and no reference is made to W.



Positive definite zonal kernels

Part 1

Definition. A kernel ¥ : S1 x §9=1 — R is called radial or zonal on
S if U(x,y) = ¢¥(xy), where ¢ : [-1,1] — R. In this case, 9 is simply
referred to as the zonal kernel and no reference is made to W.

Definition. A zonal kernel ¥ : [—1,1] — R is said to be a positive definite
zonal kernel on S4~1 if for any distinct set of nodes X = {x; }o, C S9! and

b € RY¥\{0} the matrix A = {+4)(x} x;)} is positive definite, i.e.

N N
D) bi(x] x;)b; > 0.

i=1 j=1

: PD zonal kernels are sometimes called



Positive definite zonal kernels

Part 1

Definition. A kernel ¥ : S1 x §9=1 — R is called radial or zonal on
S if U(x,y) = ¢¥(xy), where ¢ : [-1,1] — R. In this case, 9 is simply
referred to as the zonal kernel and no reference is made to W.

Definition. A zonal kernel ¥ : [—1,1] — R is said to be a positive definite
zonal kernel on S4~1 if for any distinct set of nodes X = {x; }o, C S9! and

b € RY¥\{0} the matrix A = {+4)(x} x;)} is positive definite, i.e.

N N
D) bi(x] x;)b; > 0.

i=1 j=1
- PD zonal kernels are sometimes called

e The study of positive definite kernels on S?~! started with Schoenberg
(1940).

e Extension of this work, including to conditionally positive definite ker-
nels, began in the 1990s (Cheney and Xu (1992)), and continues today.

e Our interest is strictly in S? and we will only present results for this case.



Conditionally positive definite zonal kernels

Part 1

e Similar to R%, we can define conditionally positive definite zonal kernels.

Definition. A continuous zonal kernel ¢ : [—1,1] — R is said to be
conditionally positive definite of order k on S? if, for any distinct X =

{x;}:L, C S? and all b € RV\{0} satisfying

N
Z bjp(xj) =0
71=1

for all spherical harmonics of degree < k, the following is satisfied:
N N
DO bip(x]x;)b; > 0.
i=1 j=1

e See the supplementary lecture slides for

— Brief introduction to spherical harmonics

— A full characterization for conditionally positive definite zonal kernels.



Conditionally positive definite zonal kernels

Part 1

Definition. Let ¢ : [-1,1] — R be a continuous zonal kernel and {pz(x)}i‘il
be a basis for the space of all spherical harmonics of degree kK — 1. The general
SBE' interpolant for the distinct nodes X = {Xj}é-vzl C S? and some target, f,
sampled on X, {f; ;,V:l is

N k?
Ixf(x) = Z cjw(xTXj) + Z depe(X),
j=1 (=1

N
where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,0=1,..., k%

J=1
In linear system form, these constraints are

[1347” ]g] E] = H , where a; j = 1(x] X;), pie = pe(x;)

. The above linear system is invertible for any distinct X, provided
o rank(P) = k?,

e 1 is conditionally positive definite of of order k.



Conditionally positive definite zonal kernels

Part 1

Definition. Let ¢ : [-1,1] — R be a continuous zonal kernel and {pz(x)}i‘il
be a basis for the space of all spherical harmonics of degree kK — 1. The general
SBE' interpolant for the distinct nodes X = {Xj}é-vzl C S? and some target, f,
sampled on X, {f; ;,V:l is

N k?
Ixf(x) = Z cjw(xTXj) + Z depe(X),
j=1 (=1

N
where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,0=1,..., k%

J=1
In linear system form, these constraints are

LfT Jg] [2] - [6] , where a; j = ¥(x) %), pie = pe(x;)

Example (Restricted thin plate spline, or surface spline). Let
o (t) = (1—1)log(2— 2t)
® pl(X) =1, pQ(X) = &, p3(X) =y, and p4(X) = <.

The system has a unique solution provided X are distinct.



Restricted radial kernels

Part 1

e Any (conditionally) positive definite radial kernel ¢ on R? is also (condi-
tionally) positive definite on S2.

e In fact, they are (conditionally) positive definite zonal kernels, since

o(lx - yl) = ¢ (V2= 2xTy) = p(xy), for any x,y € §°

e So, standard RBF methods can be used for problems on the sphere S2.

e Cheney (1995) appears to have been the first to mathematically study the
specialization of RBF's to the sphere. Many others have followed suit, e.g.
Fasshauer & Schumaker (1998); Baxter & Hubbert (2001); Levesley & Hubbert (2001);
Hubbert & Morton (2004); zu Castel & Filbir (2005); Narcowich, Sun, & Ward (2007);
Narcowich, Sun, Ward, & Wendland (2007); Fornberg & Piret (2007); Narcowich, Ward,
& W (2007); Fuselier, Narcowich, Ward, & W (2009); Fuselier & W (2009)
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e Any (conditionally) positive definite radial kernel ¢ on R? is also (condi-
tionally) positive definite on S2.

e In fact, they are (conditionally) positive definite zonal kernels, since

o(lx - yl) = ¢ (V2= 2xTy) = p(xy), for any x,y € §°

e So, standard RBF methods can be used for problems on the sphere S2.

e Cheney (1995) appears to have been the first to mathematically study the
specialization of RBF's to the sphere. Many others have followed suit, e.g.
Fasshauer & Schumaker (1998); Baxter & Hubbert (2001); Levesley & Hubbert (2001);
Hubbert & Morton (2004); zu Castel & Filbir (2005); Narcowich, Sun, & Ward (2007);
Narcowich, Sun, Ward, & Wendland (2007); Fornberg & Piret (2007); Narcowich, Ward,
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e Open question (Baxter & Hubbert (2001)): Are there any advantages to using
a purely PD or CPD zonal kernel to a restricted PD or CPD radial kernel?

e In this workshop we will focus on restricted radial kernels.



References for ZBF or SBF method o

e For details on interpolation with more general zonal kernels, see
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e Also see the supplementary lecture slides.



Error estimates

Part 1

e Goal: Present some known results on error estimates for RBF' interpolants on
the sphere for target function of various smoothness.

e The supplementary lecture slides contain many of the technical details includ-
ing:

— Sobolev spaces on S?;
— Native spaces;

e Brief historical notes regarding error estimates:

— Earliest results appear to be Freeden (1981), but do not depend on % or target.
— First Sobolev-type estimates were given in Jetter, Stockler, & Ward (1999).

— Since then many more results have appeared, e.g.
Levesley, Light, Ragozin, & Sun (1999), v. Golitschek & Light (2001), Morton &
Neamtu (2002), Narcowich & Ward (2002), Hubbert & Morton (2004,2004), Levesley
& Sun (2005), Narcowich, Sun, & Ward (2007), Narcowich, Sun, Ward, & Wendland
(2007), Sloan & Sommariva (2008), Sloan & Wendland (2009), Hangelbroek (2011).



(Geometric properties of node sets

Part 1

® The following properties for node sets on the sphere appear in the
error estimates:

e Mesh norm PP Ao L
RO R
Se o . . .9
. .0 ® ,. * .... — g. ...Q
hx = sup distg? (X, X) ’4":.. . ...c:-. oot 0. ...’:‘3\
XGSQ .'.‘o ¢ .o ’ e ° .. . :. 0.0‘ ...‘:.'n
L *
."‘.o.o ..‘ 5 L) "..::;
. . ’. oo e e *' o o.u.o.‘ 0.3
e Separation radius Wl Pt LN RN
= L ] * | ] ®
.o....‘ .077..0 . .o...‘..$
1 . ® * e .0 °
[ [ . .
dx = = H;éln dlStgz (Xi,Xj> ’ :
i#j (o N 2

) (Only part of the sphere is shown)
e Mesh ratio

PX — ——
qdx



Interpolation error estimates .

e We start with known error estimates for kernels of finite smoothness.

Jetter, Stockler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton
(2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

e ¢ is a restricted radial kernel

o pw)~ (1+|wl3)~C*+2 7 >1 ¢ hy = mesh-norm

o X = {Xj}é'vzl C S? e ¢x = separation radius
e /x f is RBF interpolant of f’X e px = hx/qx, mesh ratio

Theorem. Target function as smooth as the kernel
If f e HT(S?) then || f — Ix [l 2 = O(h% 2774 for 1 < p < oo,
In particular,

If = Ixfllz,s2) = O(hk)

If = Ix fllL,s2) = O(hk)

If = Ix flloos) = O(hY)



Interpolation error estimates

Part 1

e We start with known error estimates for kernels of finite smoothness.

Jetter, Stockler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton
(2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

e ¢ is a restricted radial kernel

o pw)~ (1+|wl3)~C*+2 7 >1 ¢ hy = mesh-norm

o X = {Xj}é'vzl C S? e ¢x = separation radius
e /x f is RBF interpolant of f’X e px = hx/qx, mesh ratio

Theorem. Target functions twice as smooth as the kernel
If f € H?™(S?) then || f — Ix f|1,@s2) = O(hY) for 1 < p < o0.

Remark. Known as the “doubling trick” from spline theory. (Schaback 1999)



Interpolation error estimates

Part 1

e We start with known error estimates for kernels of finite smoothness.

Jetter, Stockler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton
(2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

e ¢ is a restricted radial kernel

o pw)~ (1+|wl3)~C*+2 7 >1 ¢ hy = mesh-norm

o X = {Xj}évzl C S? e ¢x = separation radius
e /x f is RBF interpolant of f’X e px = hx/qx, mesh ratio

Theorem. Target functions rougher than the kernel.

If f € HP(S?)forT > 3 > 1then||f — Ix fllL,@s2) = O(pr—BhTX—2(1/2—1/p)+)
for 1 <p < 0.
Remark.

(1) Referred to as “escaping the native space”. (Narcowich, Ward, & Wendland (2005, 2006)).

(2) These rates are the best possible.



Interpolation error estimates

Part 1

e Example values of 7 for some radial kernels:

Name RBF (use r = /2 — 2t to get SBF 1)) T
Matern da(r) =e =" 1.5
TPS(1) o(r) = r?log(r) 2

Cubic o(r) =1’ 2
TPS(2) o(r) = r*log(r) 3

Wendland | ¢32(r) = (1 —er)%(3 + 18(er) + 15(er)?) | 3.5
Matern | ¢5(r) = e " (15 4+ 15(er) + 6(er)? + (er)?) | 4.5

e For infinitely smooth kernels gE decays faster than any polynomial
power, and special error estimates are required.

e In this case the target functions have to be very smooth (C°°(S?)).



Interpolation error estimates

Part 1

o FError estimates for infinitely smooth kernels (e.g. Gaussian, inverse multiquadric).
Jetter, Stockler, & Ward (1999)

Notation:

e ¢ is a restricted radial kernel

o gg(w) decays faster than any polynomial power

o X ={x;}jL, CS?

e Iy f is RBF interpolant of f|, * ix = mesh-norm

Theorem. Target function as smooth as the kernel

If f € Ny(S?) then || f — Ixfll1_s2) = O(hy' exp(—a/2hy)), for some a > 0
that depends on ¢.

Remarks:

(1) This is called spectral (or exponential) convergence.

(2) Function space may be small, but does include all band-limited functions.
(3) Only known result I am aware of (too bad there are not more).

(4) Numerical results indicate convergence is also fine for less smooth functions.



Optimal nodes

Part 1

e If one has the freedom to choose the nodes, then the error estimates
indicate they should be roughly as evenly spaced as possible.

Examples: Icosahedral Fibonacci Equal area
(&
2
B2
=
=
[,
O
=
)
-
Swinbank & Purser (2006) Saff & Kuijlaars (1997)
Minimum energy s—2 Minimum energy, s=3  Maximal determinant
~
+>
2z
=
=
—~
O
+
(D)
B
-
O
Z.

Hardin & Saff (2004)  Riesz energy: ||x —y||5° Womersley & Sloan (2001)



What about the shape parameter?

Part 1

e Smooth kernels with a shape parameter.

2 p(r) = ! r) =
Ex: &(r) =exp(—(er)?) o(r) NiENESE o(r)

Issue: Effect of decreasing € leads to severe ill-conditioning of interp. matrices

e=1 5—1/2 8—1/4

RZANWANV

Basis functions get flatter as ¢ — 0

1+ (er)?

Linear system for determining the interpolation coeflicients

_ - . o  Ax is guaranteed to be

ol —xill) o(x —xal) ol —xw )] [er]  [A] XS gnananteed
O(llx2 = x1l]) &([[x2 —x2|)) -+ &([[x2 —xnl]) | | 2 _ | Z is positive definite.
b(lxw —x1]) dllxn — x2) - d(lxn — xnl)] len] |fv]  RBF-Direct

~ ~~ N~
Ay c f



RBF interpolation in the “flat” limit

N

RBEF' interpolant: Ix,gf(X) = Z Cj (8>¢5(HX — X ||>
j=1

Part 1

(Driscoll & Fornberg (2002)). For N nodes in 1-D, the RBF

interpolant (for certain smooth kernels) converges to the standard Lagrange
interpolant as ¢ — 0 (flat limit)

e Higher dimensions: Limit usually exits and takes the form of a mul-
tivariate polynomial as ¢ — 0.

— Fornberg, W, & Larsson (2004), Larsson & Fornberg (2005), Schaback
(2005,2006), Lee, Yoon, & Yoon (2007)

— In the case of the Gaussian kernel, the interpolant always converges
to the de Boor & Ron “least polynomial interpolant”.

e Sphere: Limit (usually) exits and converges to a spherical harmonic
interpolant (Fornberg & Piret (2007)).



Base vs. space

Part 1

e Key observation: The space spanned by linear combinations of posi-
tive definite radial kernels (in R or S?) is good for approximation

BUT, the standard basis {¢(-,x1),...,¢(:,Xn)} can be problematic.

Analogy:
(Fornberg)
Vectors —
—_ >
Bad basis for R? Good basis for R?
Polynomials
Bad basis: 2", n=0,1,... Chebyshev basis: T.(zx),n=0,1,...
Splines 05 033

0 0
0 05 1

Truncated powers: ()3 Bspline basis: b3(z)




Using a bad basis for flat kernels:

Part 1

Error vs Shape Parameter

Smooth RBF

Max-norm error
—
Q

RBF-Direct R
s

&
‘N

RBF Interpolation Matrix

Interpolant



Using a good basis for flat kernels:

Part 1

Smooth RBF

RBF Interpolation Matrix

RBF-Direct

Max-norm error

Error vs Shape Parameter

2 4 6

Interpolant



Uncertainty principle misconception

Part 1
e Schaback’s uncertainty principle:

Principle: One cannot simultaneously achieve good conditioning
and high accuracy.
Misconception: Accuracy that can be achieved is limited by ill-conditioning.

Restatement:
One cannot simultaneously achieve good conditioning and high accuracy
when using the standard basis.

e It’s a matter of base vs. space.
e Literature for interpolation with “flat” kernels is growing:

Theory: Driscoll & Fornberg (2002) Stable Fornberg & Wright (2004)
Larsson & Fornberg (2003; 2005) algorithms: Fornberg & Piret (2007)
Fornberg, Wright, & Larsson (2004) Fornberg, Larsson, & Flyer (2011)
Schaback (2005; 2008) Fasshauer & McCourt (2011)
Platte & Driscoll (2005) Gonnet, Pachon, & Trefethen (2011)
Fornberg, Larsson, & Wright (2006) Pazouki & Schaback (2011)
deBoor (2006) De Marchi & Santin (2013)
Fornberg & Zuev (2007) Fornberg, Letho, Powell (2013)
Lee, Yoon, & Yoon (2007) Wright & Fornberg (2013)

Fornberg & Piret (2008)

Buhmann, Dinew, & Larsson (2010)

Platte (2011)

Song, Riddle, Fasshauer, & Hickernell (2011)



RBF-QR Algorithm

Part 1

e RBF-QR algorithm developed by Fornberg and Piret allows one to stably
compute “flat” kernel interpolants on the sphere.

e Idea is to create a new basis for the space spanned by shifts of a smooth
radial kernel that removes the problems with small shape parameters (see
supplementary lecture material for details).

® One can reach full numerical precision when interpolating a function
using this procedure (for smooth enough target functions and large

enough N)

e [t is more expensive than standard approach (RBF-Direct).

e Work has gone into extending this idea to general Euclidean space, but
the procedure is much more complicated.

e Matlab Code for RBF-QR is provided in the rbfsphere package.

® See Problem 2



Concluding remarks

e This was general background material for getting started in this area.

e There is still much more to learn and many interesting problems:

O

©)
©)
©)

O

O

¢ If you have any questions or want to chat about research ideas, please

Approximation (and decomposition) of vector fields.

Fast algorithms for interpolation using localized bases
Numerical integration

RBF generated finite differences

RBF partition of unity methods

Numerical solution of partial differential equations on spheres.

Generalizations to other manifolds.

come and talk to me.

Grazie per la vostra attenzione.

Part 1



