2014 Montestigliano Workshop

Radial Basis Functions for Scientific Computing

Grady B. Wright Boise State University

^{*}This work is supported by NSF grants DMS 0934581

2014 Montestigliano Workshop

Part I: Introduction

Grady B. Wright Boise State University

^{*}This work is supported by NSF grants DMS 0934581

Overview

- Scattered data interpolation in \mathbb{R}^d
 - Positive definite radial kernels: radial basis functions (RBF)
 - Some theory
- Scattered data interpolation on the sphere \mathbb{S}^2
 - Positive definite (PD) zonal kernels
 - Brief review of spherical harmonics
 - Characterization of PD zonal kernels
 - Conditionally positive definite zonal kernels
 - Examples
- Error estimates:
 - Reproducing kernel Hilbert spaces
 - Sobolev spaces
 - Native spaces
 - Geometric properties of node sets
- Optimal nodes on the sphere

Grids, meshes, nodes, used for spherical geometries

• Some examples of grids/meshes/nodes used in numerical methods:

Part 1

- Methods used:
 - Finite-difference, finite-element, finite-volume, semi-Lagrangian
 - Double Fourier, spherical harmonics, spectral elements, discontinuous Galerikin (DG), and radial basis functions (RBF)

Overview of some high-order methods for the sphere

Spherical harmonics (SPH):

Expand solution in a set of orthogonal trig-like basis functions which give an entirely uniform resolution over the sphere.

Strengths: Exponential accuracy

Weakness: No practical option for local mesh refinement, Relatively high computational cost, Poor scalability on massively parallel machines

Double Fourier series (SPH):

x

Spectral elements

Map sphere to a cube. Form elements on each face of cube.

Approximate on elements.

Strengths: Exponential accuracy, Computationally fast due to FFT Weakness: No option for local mesh refinement

Strengths:

Accuracy approaching exponential, Local mesh refinement feasible, Scalable on massively parallel machines, Mass conserving (DG)

Weakness:

Loss of efficiency due to unphysical element boundaries, Restrictive time-stepping due to clustered grids, High algorithmic complexity, and preprocessing cost

RBFs for the sphere

Strengths:

- High-order, even exponential, accuracy
- No grids or meshes: nodes can be scattered
- Local refinement is feasible
- No unphysical boundaries
- No unphysical clustering of nodes, allowing large time-steps for purely hyperbolic problems.
- No coordinate singularities to worry about
- Scalable on massively parallel machines (when using "local methods")
- Generalizes easily to other surfaces:

Weakness:

- Tuning of "shape parameter" is required
- Special algorithms required for small shape parameters
- Tuning of stabilization parameter for purely hyperbolic problems is required
- No inherent conservation

Applications of RBF methods on the sphere

Part 1

• A visual overview:

Shallow water flows: numerical weather prediction

Vector fields on the sphere:

Rayleigh-Bénard convection: Mantle convection

RBF References

• Many good books to consult on RBF theory and applications:

2004

2014: SIAM

A Primer on Radial Basis Functions with Applications to the Geosciences

Bengt Fornberg Natasha Flyer

Interpolation in 1-D with polynomials

Orthogonal polynomial basis functions: Increasingly oscillatory as the degree increases

nodes are distinct

Part 1

Polynomial interpolation in higher dimensions Part 1

Tensor product grids:

Use standard 1-D interpolation in each direction and combine as a tensor product.

What happens for scattered data?

Interpolant:
$$I_N f = \sum_{k=0}^N c_k T_k(\mathbf{x}), \ I_N f \Big|_{\mathbf{x}=\mathbf{x}_j} = f_j$$

Expansion coefficients:

$$\begin{bmatrix} T_0(\mathbf{x}_0) & T_1(\mathbf{x}_0) & \cdots & T_N(\mathbf{x}_0) \\ T_0(\mathbf{x}_1) & T_1(\mathbf{x}_1) & \cdots & T_N(\mathbf{x}_1) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \end{bmatrix}$$

 $\begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ T_0(\mathbf{x}_N) & T_1(\mathbf{x}_N) & \cdots & T_N(\mathbf{x}_N) \end{bmatrix} \begin{bmatrix} \vdots \\ c_N \end{bmatrix} \begin{bmatrix} \vdots \\ f_N \end{bmatrix}$

Depending on nodes, the system can be singular

Polynomial interpolation in higher dimensions Part 1

• Tensor product grids:

Use standard 1-D interpolation in each direction and combine as a tensor product.

• What happens for scattered data?

- Can triangulate the nodes and use splines.
- Achieving high orders of accuracy then becomes and difficult/impossible.
- Extensions to higher dimensions becomes increasingly complex.

- Let $\Omega \subset \mathbb{R}^d$ and $X = \{\mathbf{x}_j\}_{j=1}^N$ a set of nodes on Ω .
- Consider a continuous target function $f: \Omega \to \mathbb{R}$ sampled at $X: f|_{v}$.

Part 1

• <u>Definition</u>: Φ is a positive definite kernel on Ω if the matrix $A = \{\Phi(\mathbf{x}_i, \mathbf{x}_j)\}$ is positive definite for any distinct $X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega$, i.e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \Phi(\mathbf{x}_i, \mathbf{x}_j) b_j > 0, \text{ provided } \{b_i\}_{i=1}^{N} \neq 0.$$

• In this case c_j are uniquely determined by X and $f|_{X}$.

 ΛI

- Kernel interpolant to $f\Big|_X$: $I_X f = \sum_j c_j \Phi(\cdot, \mathbf{x}_j).$
- Some considerations for choosing the kernel $\Phi:\Omega\times\Omega\to\mathbb{R}$
 - 1. The kernel should be easy to compute.
 - 2. The kernel interpolant should be uniquely determined by X and $f|_X$.
 - 3. The kernel interpolant should accurately reconstruct f.

- Kernel interpolant to $f\Big|_X$: $I_X f = \sum_j c_j \Phi(\cdot, \mathbf{x}_j).$
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \to \mathbb{R}$
 - 1. The kernel should be easy to compute.
 - 2. The kernel interpolant should be uniquely determined by X and $f|_X$.
 - 3. The kernel interpolant should accurately reconstruct f.
- For problems like $\Omega = [-1, 1]^{3}$ Good choice: ϕ is a (conditionally) positive definite radial kernel $\Phi(\mathbf{x}, \mathbf{x}_{i}) = \phi(||\mathbf{x} - \mathbf{x}_{i}||_{2}) = \phi(r)$
- Leads to **RBF** interpolation.

Key idea: linear combination of translates and rotations of a single radial kernel:

 $\frac{\text{Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^2}{I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)}$ where $\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f \Big|_X = \{\mathbf{f}_j\}_{j=1}^N$$

f

Part 1

Key idea: linear combination of translates and rotations of a single radial kernel:

 $\frac{\text{Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^2}{I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)}$ where $\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f\Big|_X = \{\mathbf{f}_j\}_{j=1}^N$$

f

Part 1

Key idea: linear combination of translates and rotations of a single radial kernel:

 $\frac{\text{Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^2}{I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)}$ where $\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f \Big|_X = \{\mathbf{f}_j\}_{j=1}^N$$

f

Key idea: linear combination of translates and rotations of a single radial kernel:

 $\frac{\text{Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^2}{I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)}$ where $\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f \Big|_X = \{\mathbf{f}_j\}_{j=1}^N$$

f

Key idea: linear combination of translates and rotations of a single radial kernel:

 $\frac{\text{Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^2}{I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)}$ where $\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f \Big|_X = \{\mathbf{f}_j\}_{j=1}^N$$

f

Part 1

Key idea: linear combination of translates and rotations of a single radial kernel:

 $\frac{\text{Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^2}{I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)}$ where $\|\mathbf{x} - \mathbf{x}_j\| = \sqrt{(x - x_j)^2 + (y - y_j)^2}$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f \Big|_X = \{\mathbf{f}_j\}_{j=1}^N$$

f

Key idea: linear combination of translates and rotations of a single radial kernel:

 $\frac{\text{Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^2}{I - f(-1)} \sum_{k=1}^{N} f(-1) = \frac{1}{2} \sum$

$$I_X f(\mathbf{x}) = \sum_{j=1} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

Linear system for determining the interpolation coefficients

$$\underbrace{\begin{bmatrix} \phi(\|\mathbf{x}_{1} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{1} - \mathbf{x}_{N}\|) \\ \phi(\|\mathbf{x}_{2} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{2} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{2} - \mathbf{x}_{N}\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\|\mathbf{x}_{N} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{N} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{N} - \mathbf{x}_{N}\|) \end{bmatrix}}_{A_{X}} \underbrace{\begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{N} \end{bmatrix}}_{\underline{c}} = \underbrace{\begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{N} \end{bmatrix}}_{\underline{f}}$$

 A_X is guaranteed to be positive definite if ϕ is positive definite.

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f\Big|_X = \{f_j\}_{j=1}^N$$

• Important result on positive definite kernels:

Theorem (General kernel). Let ϕ be a continuous kernel in $L_1(\mathbb{R}^d)$. Then ϕ is positive definite if and only if ϕ is bounded and its *d*-dimensional Fourier transform $\hat{\phi}(\boldsymbol{\omega})$ is non-negative and not identically equal to zero.

Remark: Related to Bochner's theorem (1933). Theorem and proof can be found in Wendland (2005).

• To make the result specific to radial kernels, we apply the *d*-dimensional Fourier transform and use radial symmetry to get (Hankel transform):

$$\hat{\phi}(\boldsymbol{\omega}) = \hat{\phi}(\|\boldsymbol{\omega}\|_2) = \frac{1}{\|\boldsymbol{\omega}\|_2^{\nu}} \int_0^\infty \phi(t) t^{d/2+1} J_{\nu}(\|\boldsymbol{\omega}\|_2 t) dt,$$

where $\nu = d/2 - 1$ and J_{ν} is the *J*-Bessel function of order ν .

• Note that if ϕ is positive definite on \mathbb{R}^d then it is positive definite on \mathbb{R}^k for any $k \leq d$.

Positive definite radial kernels

• Examples of positive definite kernels on \mathbb{R}^d , for any d

- ε is called the shape parameter (more on this later).
- These kernels are infinitely smooth.

Positive definite radial kernels

• Examples of dimension specific positive definite kernels Finite-smoothness Infinite-smoothness

Part 1

• Discussion thus far does not cover many important radial kernels:

- These can covered under the theory of conditionally positive definite kernels.
- CPD kernels can be characterized similar to PD kernels but, using generalized Fourier transforms; see Ch. 8 Wendland 2005 for details.
- See the supplementary lecture slides for details for a characterization of these kernels.

Definition. A continuous radial kernel $\phi : [0, \infty) \to \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{R}^d if, for any distinct $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$, and all $\mathbf{b} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$ satisfying

$$\sum_{j=1}^{N} b_j p(\mathbf{x}_j) = 0$$

for all *d*-variate polynomials of degree < k, the following is satisfied:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \phi(\|\mathbf{x}_i - \mathbf{x}_j\|) b_j > 0.$$

Definition. A continuous radial kernel $\phi : [0, \infty) \to \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{R}^d if, for any distinct $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$, and all $\mathbf{b} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$ satisfying

$$\sum_{j=1}^{N} b_j p(\mathbf{x}_j) = 0$$

for all *d*-variate polynomials of degree < k, the following is satisfied:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \phi(\|\mathbf{x}_i - \mathbf{x}_j\|) b_j > 0.$$

• Alternatively, ϕ is positive definite on the subspace $V_{k-1} \subset \mathbb{R}^N$:

$$V_{k-1} = \left\{ \mathbf{b} \in \mathbb{R}^N \left| \sum_{j=1}^N b_j p(\mathbf{x}_j) = 0 \text{ for all } p \in \Pi_{k-1}(\mathbb{R}^d) \right\},\right.$$

where $\Pi_m(\mathbb{R}^d)$ is the space of all *d*-variate polynomials of degree $\leq m$.

• The case k = 0, corresponds to standard positive definite kernels on \mathbb{R}^d .

Definition. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuous and $\{p_i(\mathbf{x})\}_{i=1}^n$ be a basis for $\prod_{k=1}(\mathbb{R}^d)$ (k > 1). The general RBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{\ell=1}^n d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$$
 and $\sum_{j=1}^N c_j p_\ell(\mathbf{x}_j) = 0, \ell = 1, ..., n$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|), \ p_{i,\ell} = p_k(\mathbf{x}_i)$$

Definition. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuous and $\{p_i(\mathbf{x})\}_{i=1}^n$ be a basis for $\prod_{k=1}(\mathbb{R}^d)$ (k > 1). The general RBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{\ell=1}^n d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$$
 and $\sum_{j=1}^N c_j p_\ell(\mathbf{x}_j) = 0, \ell = 1, ..., n$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|), \ p_{i,\ell} = p_k(\mathbf{x}_i)$$

Theorem (Micchelli (1986)). The above linear system is invertible for any distinct X, provided

- $\operatorname{rank}(P) = n$ (i.e. X is unisolvent on $\Pi_{k-1}(\mathbb{R}^d)$),
- ϕ is conditionally positive definite of order k.

Definition. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuous and $\{p_i(\mathbf{x})\}_{i=1}^n$ be a basis for $\prod_{k=1}(\mathbb{R}^d)$ (k > 1). The general RBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{\ell=1}^n d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$$
 and $\sum_{j=1}^N c_j p_\ell(\mathbf{x}_j) = 0, \ell = 1, ..., n$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|), \ p_{i,\ell} = p_k(\mathbf{x}_i)$$

Example (Multiquadric, \mathbb{R}^d). $\phi(r) = \sqrt{1 + (\varepsilon r)^2}$

• Conditionally positive definite of order 1.

•
$$p_1(x, y, z) = 1.$$

The system has a unique solution.

Definition. Let $\phi : [0, \infty) \to \mathbb{R}$ be continuous and $\{p_i(\mathbf{x})\}_{i=1}^n$ be a basis for $\prod_{k=1}(\mathbb{R}^d)$ (k > 1). The general RBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{R}^d$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{\ell=1}^n d_\ell p_\ell(\mathbf{x}),$$

where
$$I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$$
 and $\sum_{j=1}^N c_j p_\ell(\mathbf{x}_j) = 0, \ \ell = 1, ..., n.$

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|), \ p_{i,\ell} = p_k(\mathbf{x}_i)$$

Example (Thin plate spline, \mathbb{R}^3). $\phi(r) = r^2 \log(r)$

• Conditionally positive definite of order 2.

•
$$p_1(x, y, z) = 1$$
, $p_2(x, y, z) = x$, $p_3(x, y, z) = y$, and $p_4(x, y, z) = z$.

The system has a unique solution provided the nodes are not collinear.

Interpolation with kernels (revisited)

- Kernel interpolant to $f\Big|_X$: $I_X f = \sum_j c_j \Phi(\cdot, \mathbf{x}_j).$
- Some considerations for choosing the kernel $\Phi:\Omega\times\Omega\to\mathbb{R}$
 - 1. The kernel should be easy to compute.
 - 2. The kernel interpolant should be uniquely determined by X and $f|_X$.
 - 3. The kernel interpolant should accurately reconstruct f.

 $\Phi(\mathbf{x}, \mathbf{x}_j) = \phi(\|\mathbf{x} - \mathbf{x}_j\|_2) = \phi(r)$

• Leads to **RBF** interpolation.

Interpolation with kernels on the sphere

- Kernel interpolant to $f\Big|_X$: $I_X f = \sum_j c_j \Phi(\cdot, \mathbf{x}_j).$
- Some considerations for choosing the kernel $\Phi: \Omega \times \Omega \to \mathbb{R}$
 - 1. The kernel should be easy to compute.
 - 2. The kernel interpolant should be uniquely determined by X and $f|_X$.
 - 3. The kernel interpolant should accurately reconstruct f.

• Analog of RBF interpolation for the sphere: SBF interpolation.

 $[\]frac{\text{Basic SBF Interpolant for } \mathbb{S}^2}{N}$

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

 $[\]frac{\text{Basic SBF Interpolant for } \mathbb{S}^2}{N}$

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

$$I_X f(\mathbf{x}) = \sum_{j=1} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

<u>Key idea</u>: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

 $[\]frac{\text{Basic SBF Interpolant for } \mathbb{S}^2}{N}$

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

Part 1

 $[\]frac{\text{Basic SBF Interpolant for } \mathbb{S}^2}{N}$

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

 $[\]frac{\text{Basic SBF Interpolant for } \mathbb{S}^2}{N}$

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

<u>Key idea</u>: linear combination of translates and rotations of a single zonal kernel on \mathbb{S}^2

 $[\]underline{\text{Basic SBF Interpolant for } \mathbb{S}^2}$

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \psi(\mathbf{x}^T \mathbf{x}_j)$$

Linear system for determining the interpolation coefficients

$$\underbrace{\begin{bmatrix} \psi(\mathbf{x}_{1}^{T}\mathbf{x}_{1}) & \psi(\mathbf{x}_{1}^{T}\mathbf{x}_{2}) \cdots \psi(\mathbf{x}_{1}^{T}\mathbf{x}_{N}) \\ \psi(\mathbf{x}_{2}^{T}\mathbf{x}_{1}) & \psi(\mathbf{x}_{2}^{T}\mathbf{x}_{2}) \cdots \psi(\mathbf{x}_{2}^{T}\mathbf{x}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi(\mathbf{x}_{N}^{T}\mathbf{x}_{1}) & \psi(\mathbf{x}_{N}^{T}\mathbf{x}_{2}) \cdots \psi(\mathbf{x}_{N}^{T}\mathbf{x}_{N}) \end{bmatrix}}_{A_{X}} \underbrace{\begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{N} \end{bmatrix}}_{\underline{c}} = \underbrace{\begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ c_{N} \end{bmatrix}}_{\underline{f}}$$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f \Big|_X = \{\mathbf{f}_j\}_{j=1}^N$$

 A_X is guaranteed to be **positive** definite if ψ is a positive definite zonal kernel

Positive definite zonal kernels

Definition. A kernel $\Psi : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}^T \mathbf{y})$, where $\psi : [-1, 1] \to \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ .

Positive definite zonal kernels

Definition. A kernel $\Psi : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}^T \mathbf{y})$, where $\psi : [-1, 1] \to \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ .

Definition. A zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{d-1} if for any distinct set of nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^{d-1}$ and $\underline{b} \in \mathbb{R}^N \setminus \{0\}$ the matrix $A = \{\psi(\mathbf{x}_i^T \mathbf{x}_j)\}$ is positive definite, i.e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \psi(\mathbf{x}_i^T \mathbf{x}_j) b_j > 0.$$

Remark: PD zonal kernels are sometimes called spherical basis functions (SBFs).

Positive definite zonal kernels

Definition. A kernel $\Psi : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ is called radial or zonal on \mathbb{S}^{d-1} if $\Psi(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}^T \mathbf{y})$, where $\psi : [-1, 1] \to \mathbb{R}$. In this case, ψ is simply referred to as the zonal kernel and no reference is made to Ψ .

Definition. A zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is said to be a positive definite zonal kernel on \mathbb{S}^{d-1} if for any distinct set of nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^{d-1}$ and $\underline{b} \in \mathbb{R}^N \setminus \{0\}$ the matrix $A = \{\psi(\mathbf{x}_i^T \mathbf{x}_j)\}$ is positive definite, i.e.

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \psi(\mathbf{x}_i^T \mathbf{x}_j) b_j > 0.$$

Remark: PD zonal kernels are sometimes called spherical basis functions (SBFs).

- The study of positive definite kernels on \mathbb{S}^{d-1} started with Schoenberg (1940).
- Extension of this work, including to conditionally positive definite kernels, began in the 1990s (Cheney and Xu (1992)), and continues today.
- Our interest is strictly in \mathbb{S}^2 and we will only present results for this case.

Part 1

• Similar to \mathbb{R}^d , we can define conditionally positive definite zonal kernels.

Definition. A continuous zonal kernel $\psi : [-1,1] \to \mathbb{R}$ is said to be conditionally positive definite of order k on \mathbb{S}^2 if, for any distinct $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$, and all $\mathbf{b} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$ satisfying

$$\sum_{j=1}^{N} b_j p(\mathbf{x}_j) = 0$$

for all spherical harmonics of degree $\langle k, k \rangle$ the following is satisfied:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} b_i \psi(\mathbf{x}_i^T \mathbf{x}_j) b_j > 0.$$

- See the supplementary lecture slides for
 - Brief introduction to spherical harmonics
 - A full characterization for conditionally positive definite zonal kernels.

Part 1

Definition. Let $\psi : [-1,1] \to \mathbb{R}$ be a continuous zonal kernel and $\{p_i(\mathbf{x})\}_{i=1}^{k^2}$ be a basis for the space of all spherical harmonics of degree k-1. The general SBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \psi(\mathbf{x}^T \mathbf{x}_j) + \sum_{\ell=1}^{k^2} d_\ell p_\ell(\mathbf{x}),$$

where $I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$ and $\sum_{j=1}^N c_j p_\ell(\mathbf{x}_j) = 0, \ell = 1, ..., k^2$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \psi(\mathbf{x}_i^T \mathbf{x}_j), \ p_{i,\ell} = p_\ell(\mathbf{x}_i)$$

Theorem. The above linear system is invertible for any distinct X, provided

- $\operatorname{rank}(P) = k^2$,
- ψ is conditionally positive definite of of order k.

Part 1

Definition. Let $\psi : [-1,1] \to \mathbb{R}$ be a continuous zonal kernel and $\{p_i(\mathbf{x})\}_{i=1}^{k^2}$ be a basis for the space of all spherical harmonics of degree k-1. The general SBF interpolant for the distinct nodes $X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$ and some target, f, sampled on X, $\{f_j\}_{j=1}^N$ is

$$I_X f(\mathbf{x}) = \sum_{j=1}^N c_j \psi(\mathbf{x}^T \mathbf{x}_j) + \sum_{\ell=1}^{k^2} d_\ell p_\ell(\mathbf{x}),$$

where $I_X f(\mathbf{x}_i) = f_i, i = 1, ..., N$ and $\sum_{j=1}^N c_j p_\ell(\mathbf{x}_j) = 0, \ell = 1, ..., k^2$.

In linear system form, these constraints are

$$\begin{bmatrix} A & P \\ P^T & 0 \end{bmatrix} \begin{bmatrix} \underline{c} \\ \underline{d} \end{bmatrix} = \begin{bmatrix} \underline{f} \\ \underline{0} \end{bmatrix}, \text{ where } a_{i,j} = \psi(\mathbf{x}_i^T \mathbf{x}_j), \ p_{i,\ell} = p_\ell(\mathbf{x}_i)$$

Example (Restricted thin plate spline, or surface spline). Let

- $\psi(t) = (1-t)\log(2-2t)$
- $p_1(\mathbf{x}) = 1, p_2(\mathbf{x}) = x, p_3(\mathbf{x}) = y, \text{ and } p_4(\mathbf{x}) = z.$

The system has a unique solution provided X are distinct.

Restricted radial kernels

- Any (conditionally) positive definite radial kernel ϕ on \mathbb{R}^3 is also (conditionally) positive definite on \mathbb{S}^2 .
- In fact, they are (conditionally) positive definite zonal kernels, since

$$\phi(\|\mathbf{x} - \mathbf{y}\|) = \phi\left(\sqrt{2 - 2\mathbf{x}^T \mathbf{y}}\right) = \psi(\mathbf{x}^T \mathbf{y}), \text{ for any } \mathbf{x}, \mathbf{y} \in \mathbb{S}^2$$

- So, standard RBF methods can be used for problems on the sphere \mathbb{S}^2 .
- Cheney (1995) appears to have been the first to mathematically study the specialization of RBFs to the sphere. Many others have followed suit, e.g. Fasshauer & Schumaker (1998); Baxter & Hubbert (2001); Levesley & Hubbert (2001); Hubbert & Morton (2004); zu Castel & Filbir (2005); Narcowich, Sun, & Ward (2007); Narcowich, Sun, Ward, & Wendland (2007); Fornberg & Piret (2007); Narcowich, Ward, & W (2007); Fuselier, Narcowich, Ward, & W (2009); Fuselier & W (2009)

Restricted radial kernels

- Any (conditionally) positive definite radial kernel ϕ on \mathbb{R}^3 is also (conditionally) positive definite on \mathbb{S}^2 .
- In fact, they are (conditionally) positive definite zonal kernels, since

$$\phi(\|\mathbf{x} - \mathbf{y}\|) = \phi\left(\sqrt{2 - 2\mathbf{x}^T \mathbf{y}}\right) = \psi(\mathbf{x}^T \mathbf{y}), \text{ for any } \mathbf{x}, \mathbf{y} \in \mathbb{S}^2$$

- So, standard RBF methods can be used for problems on the sphere \mathbb{S}^2 .
- Cheney (1995) appears to have been the first to mathematically study the specialization of RBFs to the sphere. Many others have followed suit, e.g. Fasshauer & Schumaker (1998); Baxter & Hubbert (2001); Levesley & Hubbert (2001); Hubbert & Morton (2004); zu Castel & Filbir (2005); Narcowich, Sun, & Ward (2007); Narcowich, Sun, Ward, & Wendland (2007); Fornberg & Piret (2007); Narcowich, Ward, & W (2007); Fuselier, Narcowich, Ward, & W (2009); Fuselier & W (2009)
- Open question (Baxter & Hubbert (2001)): Are there any advantages to using a purely PD or CPD zonal kernel to a restricted PD or CPD radial kernel?
- In this workshop we will focus on restricted radial kernels.

References for ZBF or SBF method

• For details on interpolation with more general zonal kernels, see

• Also see the supplementary lecture slides.

Error estimates

- Goal: Present some known results on error estimates for RBF interpolants on the sphere for target function of various smoothness.
- The supplementary lecture slides contain many of the technical details including:
 - Reproducing kernel Hilbert spaces (RKHS)
 - Sobolev spaces on \mathbb{S}^2 ;
 - Native spaces;
- Brief historical notes regarding error estimates:
 - Earliest results appear to be Freeden (1981), but do not depend on ψ or target.
 - First Sobolev-type estimates were given in Jetter, Stöckler, & Ward (1999).
 - Since then many more results have appeared, e.g.
 Levesley, Light, Ragozin, & Sun (1999), v. Golitschek & Light (2001), Morton & Neamtu (2002), Narcowich & Ward (2002), Hubbert & Morton (2004,2004), Levesley & Sun (2005), Narcowich, Sun, & Ward (2007), Narcowich, Sun, Ward, & Wendland (2007), Sloan & Sommariva (2008), Sloan & Wendland (2009), Hangelbroek (2011).

Geometric properties of node sets

- The following properties for node sets on the sphere appear in the error estimates:
- Mesh norm

$$h_X = \sup_{\mathbf{x} \in \mathbb{S}^2} \operatorname{dist}_{\mathbb{S}^2}(\mathbf{x}, X)$$

• Separation radius

$$q_X = \frac{1}{2} \min_{i \neq j} \operatorname{dist}_{\mathbb{S}^2}(\mathbf{x}_i, \mathbf{x}_j)$$

• Mesh ratio

$$\rho_X = \frac{h_X}{q_X}$$

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \mathbb{S}^2$$

(Only part of the sphere is shown)

• We start with known error estimates for kernels of finite smoothness. Jetter, Stöckler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton (2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

- ϕ is a restricted radial kernel
- $\hat{\phi}(\omega) \sim (1 + \|\omega\|_2^2)^{-(\tau+1/2)}, \tau > 1$ $h_X = \text{mesh-norm}$
- $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$

•
$$q_X$$
 = separation radius

•
$$I_X f$$
 is RBF interpolant of $f|_X$ • $\rho_X = h_X/q_X$, mesh ratio

Theorem. Target function as smooth as the kernel

If $f \in H^{\tau}(\mathbb{S}^2)$ then $||f - I_X f||_{L_p(\mathbb{S}^2)} = \mathcal{O}(h_X^{\tau-2(1/2-1/p)_+})$ for $1 \le p \le \infty$. In particular,

$$||f - I_X f||_{L_1(\mathbb{S}^2)} = \mathcal{O}(h_X^{\tau})$$

$$||f - I_X f||_{L_2(\mathbb{S}^2)} = \mathcal{O}(h_X^{\tau})$$

$$||f - I_X f||_{L_\infty(\mathbb{S}^2)} = \mathcal{O}(h_X^{\tau-1})$$

• We start with known error estimates for kernels of finite smoothness. Jetter, Stöckler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton (2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

- ϕ is a restricted radial kernel
- $\hat{\phi}(\omega) \sim (1 + \|\omega\|_2^2)^{-(\tau+1/2)}, \tau > 1$ $h_X = \text{mesh-norm}$
- $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$

•
$$q_X$$
 = separation radius

• $I_X f$ is RBF interpolant of $f|_X$ • $\rho_X = h_X/q_X$, mesh ratio

Theorem. Target functions twice as smooth as the kernel

If
$$f \in H^{2\tau}(\mathbb{S}^2)$$
 then $||f - I_X f||_{L_p(\mathbb{S}^2)} = \mathcal{O}(h_X^{2\tau})$ for $1 \le p \le \infty$.

Remark. Known as the "doubling trick" from spline theory. (Schaback 1999)

• We start with known error estimates for kernels of finite smoothness. Jetter, Stöckler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton (2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

- ϕ is a restricted radial kernel
- $\hat{\phi}(\omega) \sim (1 + \|\omega\|_2^2)^{-(\tau+1/2)}, \tau > 1$ $h_X = \text{mesh-norm}$
- $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$

•
$$q_X$$
 = separation radius

• $I_X f$ is RBF interpolant of $f|_X$ • $\rho_X = h_X/q_X$, mesh ratio

Theorem. Target functions rougher than the kernel.

If $f \in H^{\beta}(\mathbb{S}^2)$ for $\tau > \beta > 1$ then $||f - I_X f||_{L_p(\mathbb{S}^2)} = \mathcal{O}(\rho^{\tau - \beta} h_X^{\tau - 2(1/2 - 1/p)_+})$ for $1 \le p \le \infty$.

Remark.

(1) Referred to as "escaping the native space". (Narcowich, Ward, & Wendland (2005, 2006)).

(2) These rates are the best possible.

• Example values of τ for some radial kernels:

Name	RBF (use $r = \sqrt{2 - 2t}$ to get SBF ψ)	au
Matern	$\phi_2(r) = e^{-\varepsilon r}$	1.5
$\mathrm{TPS}(1)$	$\phi(r) = r^2 \log(r)$	2
Cubic	$\phi(r) = r^3$	2
TPS(2)	$\phi(r) = r^4 \log(r)$	3
Wendland	$\phi_{3,2}(r) = (1 - \varepsilon r)^6_+ (3 + 18(\varepsilon r) + 15(\varepsilon r)^2)$	3.5
Matern	$\phi_5(r) = e^{-\varepsilon r} (15 + 15(\varepsilon r) + 6(\varepsilon r)^2 + (\varepsilon r)^3)$	4.5

- For infinitely smooth kernels $\hat{\phi}$ decays faster than any polynomial power, and special error estimates are required.
- In this case the target functions have to be very smooth $(C^{\infty}(\mathbb{S}^2))$.

• Error estimates for infinitely smooth kernels (e.g. Gaussian, inverse multiquadric). Jetter, Stöckler, & Ward (1999)

Notation:

- ϕ is a restricted radial kernel
- $\hat{\phi}(\omega)$ decays faster than any polynomial power
- $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$
- $I_X f$ is RBF interpolant of $f|_X$

•
$$h_X = \text{mesh-norm}$$

Theorem. Target function as smooth as the kernel If $f \in \mathcal{N}_{\phi}(\mathbb{S}^2)$ then $||f - I_X f||_{L_{\infty}(\mathbb{S}^2)} = \mathcal{O}(h_X^{-1} \exp(-\alpha/2h_X))$, for some $\alpha > 0$ that depends on ϕ .

Remarks:

- (1) This is called spectral (or exponential) convergence.
- (2) Function space may be small, but does include all band-limited functions.
- (3) Only known result I am aware of (too bad there are not more).
- (4) Numerical results indicate convergence is also fine for less smooth functions.

Optimal nodes

• If one has the freedom to choose the nodes, then the error estimates indicate they should be roughly as evenly spaced as possible.

What about the shape parameter?

• Smooth kernels with a shape parameter.

Ex:
$$\phi(r) = \exp(-(\varepsilon r)^2)$$
 $\phi(r) = \frac{1}{\sqrt{1 + (\varepsilon r)^2}}$ $\phi(r) = \sqrt{1 + (\varepsilon r)^2}$

Issue: Effect of decreasing ε leads to severe ill-conditioning of interp. matrices

Basis functions get flatter as $\varepsilon \longrightarrow 0$

Linear system for determining the interpolation coefficients

$$\underbrace{\begin{bmatrix} \phi(\|\mathbf{x}_{1} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{1} - \mathbf{x}_{N}\|) \\ \phi(\|\mathbf{x}_{2} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{2} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{2} - \mathbf{x}_{N}\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\|\mathbf{x}_{N} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{N} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{N} - \mathbf{x}_{N}\|) \end{bmatrix}}_{\underline{C}} \underbrace{\begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{N} \end{bmatrix}}_{\underline{C}} = \underbrace{\begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{N} \end{bmatrix}}_{\underline{f}}$$

 A_X is guaranteed to be positive definite if ϕ is positive definite.

RBF-Direct

RBF interpolation in the "flat" limit

RBF interpolant:
$$I_{X,\varepsilon}f(\mathbf{x}) = \sum_{j=1}^{N} c_j(\varepsilon)\phi_{\varepsilon}(\|\mathbf{x}-\mathbf{x}_j\|)$$

Theorem (Driscoll & Fornberg (2002)). For N nodes in 1-D, the RBF interpolant (for certain smooth kernels) converges to the standard Lagrange interpolant as $\varepsilon \longrightarrow 0$ (flat limit)

Part 1

- Higher dimensions: Limit usually exits and takes the form of a multivariate polynomial as $\varepsilon \longrightarrow 0$.
 - Fornberg, W, & Larsson (2004), Larsson & Fornberg (2005), Schaback (2005,2006), Lee, Yoon, & Yoon (2007)
 - In the case of the Gaussian kernel, the interpolant always converges to the de Boor & Ron "least polynomial interpolant".
- Sphere: Limit (usually) exits and converges to a spherical harmonic interpolant (Fornberg & Piret (2007)).

Base vs. space

• Key observation: The space spanned by linear combinations of positive definite radial kernels (in \mathbb{R}^d or \mathbb{S}^2) is good for approximation

BUT, the standard basis $\{\phi(\cdot, \mathbf{x}_1), \ldots, \phi(\cdot, \mathbf{x}_N)\}$ can be problematic.

Using a bad basis for flat kernels:

Using a good basis for flat kernels:

Uncertainty principle misconception

• Schaback's uncertainty principle:

Principle: One cannot simultaneously achieve good conditioning and high accuracy.
Misconception: Accuracy that can be achieved is limited by ill-conditioning.

Restatement:

One cannot simultaneously achieve good conditioning and high accuracy when using the standard basis.

- It's a matter of base vs. space.
- Literature for interpolation with "flat" kernels is growing:

Theory:Driscoll & Fornberg (2002)
Larsson & Fornberg (2003; 2005)algFornberg, Wright, & Larsson (2004)Schaback (2005; 2008)Platte & Driscoll (2005)Fornberg, Larsson, & Wright (2006)deBoor (2006)Fornberg & Zuev (2007)Lee, Yoon, & Yoon (2007)Fornberg & Piret (2008)Buhmann, Dinew, & Larsson (2010)Platte (2011)Song, Riddle, Fasshauer, & Hickernell (2011)

StableFornberg & Wright (2004)algorithms:Fornberg & Piret (2007)Fornberg, Larsson, & Flyer (2011)Fasshauer & McCourt (2011)Gonnet, Pachon, & Trefethen (2011)Pazouki & Schaback (2011)De Marchi & Santin (2013)Fornberg, Letho, Powell (2013)Wright & Fornberg (2013)

- RBF-QR algorithm developed by Fornberg and Piret allows one to stably compute "flat" kernel interpolants on the sphere.
- Idea is to create a new basis for the space spanned by shifts of a smooth radial kernel that removes the problems with small shape parameters (see supplementary lecture material for details).
- One can reach full numerical precision when interpolating a function using this procedure (for smooth enough target functions and large enough N)
- It is more expensive than standard approach (RBF-Direct).
- Work has gone into extending this idea to general Euclidean space, but the procedure is much more complicated.
- Matlab Code for RBF-QR is provided in the **rbfsphere** package.
- See Problem 2

Concluding remarks

- This was general background material for getting started in this area.
- There is still much more to learn and many interesting problems:
 - Approximation (and decomposition) of vector fields.
 - Fast algorithms for interpolation using localized bases
 - Numerical integration
 - RBF generated finite differences
 - RBF partition of unity methods
 - Numerical solution of partial differential equations on spheres.
 - Generalizations to other manifolds.
- ✤ If you have any questions or want to chat about research ideas, please come and talk to me.