2014 Montestigliano Workshop

Radial Basis Functions for Scientific Computing

Grady B. Wright

Boise State University
*This work is supported by NSF grants DMS 0934581

2014 Montestigliano Workshop

Part II: Advanced Techniques

Grady B. Wright
Boise State University

*This work is supported by NSF grants DMS 0934581

Localized bases

Localized bases for "scale-independent" radial kernels

Review: RBF interpolation

Key idea: linear combination of translates and rotations of a single radial kernel:

$$
f \quad X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \Omega,\left.\quad f\right|_{X}=\left\{f_{j}\right\}_{j=1}^{N}
$$

$\frac{\text { Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^{2}}{N}$

$$
I_{X} f(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)
$$

Linear system for determining the interpolation coefficients

$$
\underbrace{\left[\begin{array}{cccc}
\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{N}\right\|\right) \\
\phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{N}\right\|\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{N}\right\|\right)
\end{array}\right]}_{A_{X}} \underbrace{\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]}_{\underline{c}}=\underbrace{\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]}_{\underline{f}} \begin{aligned}
& A_{X} \text { is guaranteed to be } \\
& \text { positive definite if } \\
& \phi \text { is positive definite. }
\end{aligned}
$$

Localized bases

- "Scale independent" kernels.

Issues:

- For large N, interpolation matrices are dense.
- Matrices are not nice for iterative methods.
- Ideas for constructing a better basis:
- Difference functionals: Dyn, Levin \& Rippa; Sibson \& Stone; Beatson, Levesley, \& Mouat.
- Approximate cardinal functions: Beatson \& Powell; Faul \& Powell; Beatson, Cherrie, \& Mouat.
- Orthonormal: Schaback \& Müller; Schaback \& Pazouki; De Marchi \& Santin

Lagrange functions on the sphere

Restrict our attention to $\Omega=\mathbb{S}^{2}$ and $\phi_{\ell}(r)=r^{2(\ell-1)} \log (r)$
Standard RBF
 interpolant:

Lagrange functions on the sphere

Restrict our attention to $\Omega=\mathbb{S}^{2}$ and $\phi_{\ell}(r)=r^{2(\ell-1)} \log (r)$
Standard RBF interpolant:

Lagrange form:

$$
s_{X}(\mathbf{x})=\sum_{j=1}^{N} L_{j}(\mathbf{x}) f_{j}, \quad L_{i}\left(\mathbf{x}_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Results on the Lagrange functions for quasi-uniform X : (Hangelbroek, Narcowich, Sun, Ward)

1. Lagrange basis is local (HNW, 2010):

$$
\left|L_{j}(\mathbf{x})\right| \leq C \exp \left[-\nu \frac{\operatorname{dist}\left(\mathbf{x}_{j}, \mathbf{x}\right)}{h_{X}}\right]
$$

2. Lebesgue constant is bounded (HNW, 2010):

$$
\mathcal{L}_{X}:=\max _{\mathbf{x} \in \mathbb{S}^{2}} \sum_{j=1}^{N}\left|L_{j}(\mathbf{x})\right| \leq C
$$

3. Lagrange basis is stable (HNSW, 2011)

$\left|L_{j}(\mathbf{x})\right|$

Local Lagrange functions on the sphere

$$
X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2} \quad \underline{\text { Algorithm: For } i=1, \ldots, N}
$$

1. Choose $n \ll N$ nearest neighbors to \mathbf{x}_{i} :

$$
\rightarrow X_{i}=\left\{\mathbf{x}_{j}^{i}\right\}_{j=1}^{n} \subset X
$$

2. Construct the local Lagrange function on X :

$$
\widetilde{L}_{i}(\mathbf{x})=\sum_{j=1}^{n} c_{j}^{i} \phi_{\ell}\left(\left\|\mathbf{x}-\mathbf{x}_{j}^{i}\right\|\right)+\sum_{k=1}^{\ell^{2}} b_{k} p_{k}(\mathbf{x})
$$

Local Lagrange functions on the sphere

$$
X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2} \quad \underline{\text { Algorithm: For } i=1, \ldots, N}
$$

1. Choose $n \ll N$ nearest neighbors to \mathbf{x}_{i} :

$$
\rightarrow X_{i}=\left\{\mathbf{x}_{j}^{i}\right\}_{j=1}^{n} \subset X
$$

2. Construct the local Lagrange function on X :

$$
\widetilde{L}_{i}(\mathbf{x})=\sum_{j=1}^{n} c_{j}^{i} \phi_{\ell}\left(\left\|\mathbf{x}-\mathbf{x}_{j}^{i}\right\|\right)+\sum_{k=1}^{\ell^{2}} b_{k} p_{k}(\mathbf{x})
$$

Local Lagrange functions on the sphere

$$
X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2} \quad \underline{\text { Algorithm: For } i=1, \ldots, N}
$$

1. Choose $n \ll N$ nearest neighbors to \mathbf{x}_{i} :

$$
\rightarrow X_{i}=\left\{\mathbf{x}_{j}^{i}\right\}_{j=1}^{n} \subset X
$$

2. Construct the local Lagrange function on X :

$$
\widetilde{L}_{i}(\mathbf{x})=\sum_{j=1}^{n} c_{j}^{i} \phi_{\ell}\left(\left\|\mathbf{x}-\mathbf{x}_{j}^{i}\right\|\right)+\sum_{k=1}^{\ell^{2}} b_{k} p_{k}(\mathbf{x})
$$

Estimates: (FHNWW, 2013)

If each $\widetilde{L}_{j}(\mathbf{x})$ is constructed from $n=M(\log N)^{2}$ neighbors then

$$
\begin{aligned}
\left\|\widetilde{L}_{j}-L_{j}\right\|_{\infty} & \leq C h_{X}^{J} \\
\left|\widetilde{L}_{j}(\mathbf{x})\right| & \leq C\left(1+\operatorname{dist}\left(\mathbf{x}, \mathbf{x}_{j}\right) / h_{X}\right)^{-J}
\end{aligned}
$$

Interpolation matrices

- Example: $N=1024, n=70$

Standard basis:

$$
s_{X}(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi_{2}\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{k=1}^{4} b_{k} p_{k}(\mathbf{x})
$$

Interpolation matrix

Approximate Lagrange basis:

$$
s(\mathbf{x})=\sum_{j=1}^{N} a_{j} \widetilde{L}_{j}(\mathbf{x})
$$

Interpolation matrix

Solving "preconditioned" systems

- Numerical experiment: $s(\mathbf{x})=\sum_{j=1}^{N} a_{j} \widetilde{L}_{j}(\mathbf{x})$
- Target f : random values distributed between $[-1,1]$.
- \widetilde{L}_{j} constructed from $n=7\left\lceil\left(\log _{10} N\right)^{2}\right\rceil$ neighbors
- Systems solved using GMRES iterative method (Saad \& Schultz, 1986)

Solving "preconditioned" systems

- Numerical experiment: $s(\mathbf{x})=\sum_{j=1}^{N} a_{j} \widetilde{L}_{j}(\mathbf{x})$
- Target f : random values distributed between $[-1,1]$.
- \widetilde{L}_{j} constructed from $n=7\left\lceil\left(\log _{10} N\right)^{2}\right\rceil$ neighbors
- Systems solved using GMRES iterative method (Saad \& Schultz, 1986)

		Number GMRES iterations					
		tol $=10^{-6}$	tol $=10^{-8}$	tol $=10^{-10}$	tol $=10^{-12}$		
N	n	ρ_{X}	Icosahedral nodes				
2562	84	1.650	7	8	9	10	
10242	119	1.679	5	7	8	9	
23042	140	1.688	6	7	8	9	
40962	154	1.693	5	7	7	8	
92162	175	1.688	6	8	9	10	
163842	196	1.701	5	7	7	8	

Note: Each iteration takes $\mathcal{O}\left(N^{2}\right)$ operations, but may be reduced to $\mathcal{O}(N \log N)$ using NFFT (Keiner, Kunis, \& Potts, 2006). Project?

Solving "preconditioned" systems

- Numerical experiment: $s(\mathbf{x})=\sum_{j=1}^{N} a_{j} \widetilde{L}_{j}(\mathbf{x})$
- Target f : random values distributed between $[-1,1]$.
- \widetilde{L}_{j} constructed from $n=7\left\lceil\left(\log _{10} N\right)^{2}\right\rceil$ neighbors
- Systems solved using GMRES iterative method (Saad \& Schultz, 1986)

		Number GMRES iterations				
		tol $=10^{-6}$	tol $=10^{-8}$	tol $=10^{-10}$	tol $=10^{-12}$	
N	n	ρ_{X}	Hammersley nodes			
4000	91	24.56	8	10	11	12
8000	112	34.74	8	9	11	12
16000	126	49.13	7	9	10	11
32000	147	69.48	7	8	10	11
64000	168	98.26	7	9	10	12

Note: Also appears to work well for less uniform nodes, but no theory (yet!).

Concluding remarks on local Lagrange basis

- Local Lagrange basis appears to provide a good bases for certain kernel spaces on \mathbb{S}^{2}.
- Can be computed using $\mathcal{O}\left(N(\log N)^{2}\right)$ nearest neighbors.
- Computation is embarrassingly parallel.
- Works very well as a preconditioner for global interpolation problem.
- Research problems:
- Combine with fast evaluation algorithms to compute interpolation coefficients for the global interpolant in total of $\mathcal{O}\left(N \log (N)^{2}\right)$.
- Use local Lagrange basis as a quasi-interpolant.
- Use local Lagrange basis as trial functions in a Galerkin formulation of PDEs on the sphere. (Need quadrature formulas for the sphere.)

Quadrature

Using RBF interpolation for developing quadrature formulas on the sphere

Quadrature on the sphere

- Problem: Given $X=\{\mathbf{x}\}_{j=1}^{N} \subset \mathbb{S}^{2}$, find weights $\left\{w_{j}\right\}_{j=1}^{N}$ such that

$$
\int_{\mathbb{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x}) \approx \sum_{j=1}^{N} w_{j} f\left(\mathbf{x}_{j}\right)=: Q(f), \quad f \in C\left(\mathbb{S}^{2}\right)
$$

- One solution: Find the weights from the kernel interpolant of f on X :

$$
\int_{\mathbb{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x}) \approx \int_{\mathbb{S}^{2}} s_{X}(\mathbf{x}) d \mu(\mathbf{x})
$$

- So what are the weights?

Quadrature on the sphere

- Problem: Given $X=\{\mathbf{x}\}_{j=1}^{N} \subset \mathbb{S}^{2}$, find weights $\left\{w_{j}\right\}_{j=1}^{N}$ such that

$$
\int_{\mathbb{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x}) \approx \sum_{j=1}^{N} w_{j} f\left(\mathbf{x}_{j}\right)=: Q(f), \quad f \in C\left(\mathbb{S}^{2}\right)
$$

- One solution: Find the weights from the kernel interpolant of f on X :

$$
\int_{\mathbb{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x}) \approx \int_{\mathbb{S}^{2}} s_{X}(\mathbf{x}) d \mu(\mathbf{x})
$$

- So what are the weights?

$$
\text { Lagrange form : } \int_{\mathbb{S}^{2}} s_{X}(\mathbf{x}) d \mu(\mathbf{x})=\sum_{j=1}^{N} \underbrace{\left(\int_{\mathbb{S}^{2}} L_{j}(\mathbf{x}) d \mu(\mathbf{x})\right)}_{w_{j}} f_{j}
$$

- How can this be made computationally tractable for large N ?

Quadrature on the sphere

- A neat results for radial (zonal) kernels:

$$
\begin{aligned}
& \int_{\mathbb{S}^{2}} s_{X}(\mathbf{x}) d \mu(\mathbf{x})=\sum_{j=1}^{N}\left(\int_{\mathbb{S}^{2}} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right) d \mu(\mathbf{x})\right) c_{j} \\
& =\left(\int_{\mathbb{S}^{2}} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{1}\right\|\right) d \mu(\mathbf{x})\right) \sum_{j=1}^{N} c_{j}=J_{0}\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right] \\
& =\underbrace{J_{0}\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]\left[\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right)\right]^{-1}}_{\left[\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{N}
\end{array}\right]}\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]
\end{aligned}
$$

- So the weights can be computed from solving one linear system.

Quadrature on the sphere

- Problem: Given $X=\{\mathbf{x}\}_{j=1}^{N} \subset \mathbb{S}^{2}$, find weights $\left\{w_{j}\right\}_{j=1}^{N}$ such that

$$
\int_{\mathbb{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x}) \approx \sum_{j=1}^{N} w_{j} f\left(\mathbf{x}_{j}\right)=: Q(f), \quad f \in C\left(\mathbb{S}^{2}\right)
$$

- One solution: Find the weights from the kernel interpolant of $\left.f\right|_{X}$

Quadrature on the sphere

- Problem: Given $X=\{\mathbf{x}\}_{j=1}^{N} \subset \mathbb{S}^{2}$, find weights $\left\{w_{j}\right\}_{j=1}^{N}$ such that

$$
\int_{\mathbb{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x}) \approx \sum_{j=1}^{N} w_{j} f\left(\mathbf{x}_{j}\right)=: Q(f), \quad f \in C\left(\mathbb{S}^{2}\right)
$$

- One solution: Find the weights from the kernel interpolant of $\left.f\right|_{X}$:
- Note that this idea can be extended to CPD kernels as well (See problem 7):

$$
\begin{aligned}
& s_{X}(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi_{\ell}\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{k=1}^{\ell^{2}} b_{k} p_{k}(\mathbf{x}), \quad \phi_{\ell}(r)=r^{2(\ell-1)} \log (r) \\
& \text { Error: }\left|\int_{\mathbb{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x})-\sum_{j=1}^{N} w_{j} f_{j}\right| \leq \begin{cases}h_{X}^{r}\|f\|_{C^{r}\left(\mathbb{S}^{2}\right)} & 0<r \leq 2 \ell \\
h_{X}^{r}\|f\|_{H^{r}\left(\mathbb{S}^{2}\right)} & 1<r \leq \ell\end{cases}
\end{aligned}
$$

Quadrature on the sphere

- Problem: Given $X=\{\mathbf{x}\}_{j=1}^{N} \subset \mathbb{S}^{2}$, find weights $\left\{w_{j}\right\}_{j=1}^{N}$ such that

$$
\int_{\mathbb{S}^{2}} f(\mathbf{x}) d \mu(\mathbf{x}) \approx \sum_{j=1}^{N} w_{j} f\left(\mathbf{x}_{j}\right)=: Q(f), \quad f \in C\left(\mathbb{S}^{2}\right)
$$

- One solution: Find the weights from the kernel interpolant of $\left.f\right|_{X}$:

$$
\left[\phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right)\right]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{N}
\end{array}\right]=\left[\begin{array}{c}
J_{0} \\
\vdots \\
J_{0}
\end{array}\right]
$$

- Note that this idea can be extended to CPD kernels as well (See problem 7):

$$
s_{X}(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi_{\ell}\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{k=1}^{\ell^{2}} b_{k} p_{k}(\mathbf{x}), \quad \phi_{\ell}(r)=r^{2(\ell-1)} \log (r)
$$

- How ELSE can this be made computationally tractable for large N Local Lagrange basis!

Example of quadrature weights

- Quadrature weights computed using $N=23042$, icosahedral nodes

$$
\phi_{2}(r)=r^{2} \log (r)
$$

- Computations done using local Lagrange basis as a preconditioner

$N=22500$, Quasi-min. energy

Borodachov, Hardin, Saff (2014)

Numerical example

Smooth target function

Numerical example

- Weights computed up to $N=650000$
- Convergence is $\mathcal{O}\left(h_{X}^{4}\right)$.

Remarks on RBF-based quadrature

- Quadrature weights can be computed by solving one linear system.
- For large N, these weights can be computed in $O\left(N^{2}\right)$ operations for the thin plate spline using the local Lagrange functions as a preconditioner.
- Research problems:
- Develop a fast evaluation algorithm to compute weights in $\mathcal{O}\left(N \log (N)^{2}\right)$.
- Simply use the local Lagrange functions to compute the quadrature weights (using a a quasi-interpolant instead of an interpolant).
- Use the quadrature weights for computing the integrals associated with a Galerkin formulation of some PDEs on the sphere. (Use local Lagrange functions as the trial functions.)
- Develop local Lagrange functions and quadrature weights for more general ellipsoids.

RBF-PUM

Combining RBFs and the Partition-of-Unity method for interpolation (RBF-PUM)

RBFs and partition-of-unity on the sphere

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key references:

- I. Babuška \& J.M. Melenk. The partition of unity method. IJNME (1998).
- R. Cavoretto \& A. DeRossi, Fast and accurate interpolation of large scattered data sets on the sphere. J. Comput. Appl. Math. (2010)
- First application of PUM to RBF interpolation on the sphere

RBFs and partition-of-unity on the sphere

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

1. Generate a set of overlapping patches (spherical caps) $\Omega=\left\{\Omega_{k}\right\}_{k=1}^{M}$ with the properties:
(a) Each patch contains roughly n nodes of X.
(b) $\bigcup_{k=1}^{M} \Omega_{k}=\mathbb{S}^{2}$.

RBFs and partition-of-unity on the sphere

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

M total patches
n nodes per patch
$\xi_{k}=$ center of patch Ω_{k}

1. Generate a set of overlapping patches (spherical caps) $\Omega=\left\{\Omega_{k}\right\}_{k=1}^{M}$ with the properties:
(a) Each patch contains roughly n nodes of X.
(b) $\bigcup^{M} \Omega_{k}=\mathbb{S}^{2}$.

RBFs and partition-of-unity on the sphere

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

2. Letting X_{k} denote the set of nodes in patch Ω_{k}, construct RBF interpolants s_{k}, for $k=1, \ldots, M$:

$$
s_{k}(\mathbf{x})=\sum_{j=1}^{n} c_{j}^{k} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}^{k}\right\|\right)
$$

RBFs and partition-of-unity on the sphere

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

M total patches
n nodes per patch
$\xi_{k}=$ center of patches Ω_{k}
3. Define weight functions $w_{k}: \mathbb{S}^{2} \rightarrow \mathbb{R}, k=1, \ldots, M$, such that:
(a) Each w_{k} is compactly supported over Ω_{k}.
(b) The set of all w_{k} form a partition-of-unity over Ω :

$$
\sum_{k=1}^{M} w_{k}(\mathbf{x}) \equiv 1, \mathbf{x} \in \Omega
$$

RBFs and partition-of-unity on the sphere

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

M total patches n nodes per patch
$\xi_{k}=$ center of patches Ω_{k}
3. Define weight functions $w_{k}: \mathbb{S}^{2} \rightarrow \mathbb{R}, k=1, \ldots, M$, such that:
(a) Each w_{k} is compactly supported over Ω_{k}.
(b) The set of all w_{k} form a partition-of-unity over Ω :

$$
\sum_{k=1}^{M} w_{k}(\mathbf{x}) \equiv 1, \mathbf{x} \in \Omega
$$

RBFs and partition-of-unity on the sphere

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

M total patches
n nodes per patch
$\xi_{k}=$ center of patches Ω_{k}
Key Steps:

$\rho_{k}=$ radius of patch Ω_{k}
ψ has compact support over $[0,1]$
Ex: $\psi=$ cubic B-spline

RBFs and partition-of-unity on the sphere

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

M total patches
n nodes per patch
$\xi_{k}=$ center of patches Ω_{k}
4. Create a global interpolant for X as

$$
s_{X}(\mathbf{x})=\sum_{k=1}^{M} w_{k}(\mathbf{x}) s_{k}(\mathbf{x})
$$

Example for choosing the nodes and patches

Nodes: We use the maximal determinant (MD) node sets, which are quasi-uniformly distributed over the sphere. R.S. Womersley, I. Sloan (2001)

Patches: We use minimum energy (ME) points, which are also quasiuniformly distributed over the sphere. D.P. Hardin, E.B. Saff (2004)

Nodes

Parameters: Given N nodes, there are 2 parameters to choose for determining the total number of patches M :

- $n=$ approx. number of nodes in each patch;
- $\quad q=$ measure of the amount the patches overlap.

Choosing the nodes and patches

- Using the quasi-uniformity of the nodes and patches, we compute the radii of the patches using the approximation:

$$
\frac{4 \pi}{N} \approx \frac{\pi \rho^{2}}{n} \quad \Longrightarrow \quad \rho \approx 2 \sqrt{\frac{n}{N}}
$$

- The overlap parameter q determines the average number of patches a node belongs to, and satisfies the relationship:

$$
\frac{4 \pi}{M} \approx \frac{\pi \rho^{2}}{q} \quad \Longrightarrow \quad M=\left\lceil q \frac{N}{n}\right\rceil
$$

Choosing the nodes and patches

- Illustration of the patches for $N=4096, n=100$, and different q :

Comparison to global RBF method

$N=$ total nodes

$N=$ total nodes
$M=$ total patches
$n=$ nodes per patch
$\mathrm{q}=$ avg. \# patches a node belongs to

Computational cost

Collocation	Global RBF	RBF-PUM*
Construction:	$O\left(N^{3}\right)$	$O\left(n^{3} M\right)+O(N \log N)=$ $O\left(n^{2} q N\right)+O(N \log N)$
Evaluation at K nodes:	$O(K N)$	$O(q n K)$

Comparison to global RBF method

$N=$ total nodes

$N=$ total nodes
$M=$ total patches
$n=$ nodes per patch
$\mathrm{q}=$ avg. \# patches a node belongs to

Accuracy Comparison:

- Theory for RBF-PUM interpolation in \mathbb{R}^{d} says same convergence orders should be expected as global RBFs (although constants involved are larger and depend strongly on the partitions).
- No theory on for \mathbb{S}^{2}, but should expect similar results.

Remarks on RBF-PUM

- RBF-PUM interpolant has near-optimal computational scaling.
- Error estimates for the sphere still need to be worked out.
- Research problems:
- Develop RBF-PUM for non-uniform nodes on the sphere.
- Develop a multilevel (or multiscale) framework for fitting/filtering data using RBF-PUM.
- Develop a PBF-PUM to solve PDEs, such as advection-reactiondiffusion on the sphere. Use collocation or Galerkin method.
- Use RBF-PUM for geometric modeling (see problems 3 and 9).

RBFs for PDEs

Computing derivatives and solving PDEs with RBFs

(Surface) Div, Grad, Curl, and all that

Spherical Coords.

Point: $\quad(\lambda, \theta, 1)$

$$
\begin{array}{ll}
\text { Unit vectors: } & \hat{\mathbf{i}}=\text { longitudinal } \\
& \hat{\mathbf{j}}=\text { latitudinal } \\
& \hat{\mathbf{k}}=\text { radial }
\end{array}
$$

Cartesian Coords.

(x, y, z)

$$
\begin{aligned}
& \hat{\mathbf{i}}=x \text {-direction } \\
& \hat{\mathbf{j}}=y \text {-direction } \\
& \hat{\mathbf{k}}=z \text {-direction }
\end{aligned}
$$

Unit tangent vectors: $\hat{\mathbf{i}}, \hat{\mathbf{j}}$

$$
\boldsymbol{\zeta}=\frac{1}{\sqrt{1-z^{2}}}\left[\begin{array}{c}
-y \\
x \\
0
\end{array}\right], \boldsymbol{\mu}=\frac{1}{\sqrt{1-z^{2}}}\left[\begin{array}{c}
-z x \\
-z y \\
1-z^{2}
\end{array}\right]
$$

Unit normal vector: $\hat{\mathbf{k}}$
$\mathbf{x}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
Gradient of scalar $g: \quad \mathbf{u}_{s}=\nabla_{s} g=\frac{1}{\cos \theta} \frac{\partial g}{\partial \lambda} \hat{\mathbf{i}}+\frac{\partial g}{\partial \theta} \hat{\mathbf{j}}$

$$
\mathbf{u}_{c}=P\left(\nabla_{c} g\right)=P\left(\frac{\partial g}{\partial x} \hat{\mathbf{i}}+\frac{\partial g}{\partial y} \hat{\mathbf{j}}+\frac{\partial g}{\partial z} \hat{\mathbf{k}}\right)
$$

Surface divergence of $\mathbf{u}: \quad \nabla_{s} \cdot \mathbf{u}_{s}=\frac{1}{\cos \theta} \frac{\partial u_{s}}{\partial \lambda}+\frac{\partial v_{s}}{\partial \theta}$

$$
\left(\nabla_{c}\right) \cdot \mathbf{u}_{c}=\nabla_{c} \cdot \mathbf{u}_{c}-\mathbf{x} \cdot \nabla\left(\mathbf{u}_{c} \cdot \mathbf{x}\right)
$$

Curl of a scalar $f: \quad \mathbf{u}_{s}=\hat{\mathbf{k}} \times\left(\nabla_{s} f\right)=-\frac{\partial f}{\partial \theta} \hat{\mathbf{i}}+\frac{1}{\cos \theta} \frac{\partial f}{\partial \lambda} \hat{\mathbf{j}} \quad \mathbf{u}_{c}=\mathbf{x} \times\left(P \nabla_{c} f\right)=Q P\left(\nabla_{c} f\right)=Q\left(\nabla_{c} f\right)$
Surface curl of a vector $\mathbf{u}: \hat{\mathbf{k}} \cdot\left(\nabla_{s} \times \mathbf{u}_{s}\right)=-\nabla_{s} \cdot\left(\hat{\mathbf{k}} \times \mathbf{u}_{s}\right)$

$$
\mathbf{x} \cdot\left(\left(P \nabla_{c}\right) \times \mathbf{u}_{c}\right)=-\nabla_{c} \cdot\left(Q \mathbf{u}_{c}\right)
$$

Here: $P=I-\mathbf{x} \mathbf{x}^{T}=\left[\begin{array}{ccc}1-x^{2} & -x y & -x z \\ -x y & 1-y^{2} & -y z \\ -x z & -y z & 1-z^{2}\end{array}\right] \quad Q=\left[\begin{array}{ccc}0 & -z & y \\ z & 0 & -x \\ -y & x & 0\end{array}\right]$

Ex: Transport equation on the sphere

- Transport equation for a scalar valued quantity h on the surface of the unit sphere in an incompressible velocity field $\mathbf{u}_{\boldsymbol{c}}$.
- The governing PDE can be written in Cartesian coordinates as:

$$
h_{t}+\mathbf{u}_{c} \cdot\left(P \nabla_{c} h\right)=0
$$

P projects arbitrary three-dimensional vectors onto a plane tangent to the unit sphere at \mathbf{x}.

- Surface gradient operator:

$$
P \nabla_{c}=\left(\mathbf{I}-\mathbf{x x}^{T}\right) \nabla_{c}=\left[\begin{array}{ccc}
\left(1-x^{2}\right) & -x y & -x z \\
-x y & \left(1-y^{2}\right) & -y z \\
-x z & -y z & \left(1-z^{2}\right)
\end{array}\right]\left[\begin{array}{l}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{p}_{x} \cdot \nabla \\
\mathbf{p}_{y} \cdot \nabla \\
\mathbf{p}_{z} \cdot \nabla
\end{array}\right]
$$

No coordinate singularities!

Ex: shallow water equations on a rotating sphere

- Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous, and inviscid fluid layer.

- Idealized test-bed for horizontal dynamics of all 3-D global climate models. Equations Momentum Transport

Spherical	$\frac{\partial \mathbf{u}_{s}}{\partial t}+\mathbf{u}_{s} \cdot \nabla_{s} \mathbf{u}_{s}+f \hat{\mathbf{k}} \times \mathbf{u}_{s}+g \nabla_{s} h=0 \quad \frac{\partial h^{*}}{\partial t}+\nabla_{s} \cdot\left(h^{*} \mathbf{u}_{s}\right)=0$

Singularity at poles!

| Cartesian |
| :---: | :---: |
| coordinates |\(\frac{\partial \mathbf{u}_{c}}{\partial t}+P\left[\begin{array}{c}\left(\mathbf{u}_{c} \cdot P \nabla_{c}\right) u_{c}+f\left(\mathbf{x} \times \mathbf{u}_{c}\right) \cdot \hat{\mathbf{i}}+g\left(P \hat{\mathbf{i}} \cdot \nabla_{c}\right) h

\left(\mathbf{u}_{c} \cdot P \nabla_{c}\right) v_{c}+f\left(\mathbf{x} \times \mathbf{u}_{c}\right) \cdot \mathbf{\mathbf { j }}+g\left(P \hat{\mathbf{j}} \cdot \nabla_{c}\right) h

\left(\mathbf{u}_{c} \cdot P \nabla_{c}\right) w_{c}+f\left(\mathbf{x} \times \mathbf{u}_{c}\right) \cdot \hat{\mathbf{k}}+g\left(P \hat{\mathbf{k}} \cdot \nabla_{c}\right) h\end{array}\right]=0 \quad \frac{\partial h^{*}}{\partial t}+\left(P \nabla_{c}\right) \cdot\left(h^{*} \mathbf{u}_{c}\right)=0\)
Smooth over entire sphere!

Ex: Diffusion equation on the sphere

- Diffusion of a scalar valued quantity u on the surface of the unit sphere
- The governing PDE can be written in Cartesian coordinates as:

$$
\begin{aligned}
u_{t} & =\Delta_{s} u+f(t, u) \\
& =\left(\Delta_{c}-\mathbf{x}^{T}\left(2+\mathbf{x}^{T} \nabla_{c}\right) \nabla_{c}\right) u+f(t, u)
\end{aligned}
$$

No coordinate singularities!

Approximating the surface gradient

- We will illustrate how to approximate the surface gradient operator using RBFs:

$$
\mathbf{P} \nabla=\left(\mathbf{I}-\mathbf{x x}^{T}\right) \nabla=\left[\begin{array}{ccc}
\left(1-x^{2}\right) & -x y & -x z \\
-x y & \left(1-y^{2}\right) & -y z \\
-x z & -y z & \left(1-z^{2}\right)
\end{array}\right]\left[\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{x} \cdot \nabla \\
\mathbf{p}_{y} \cdot \nabla \\
\mathbf{p}_{z} \cdot \nabla
\end{array}\right]
$$

\mathbf{P} projects arbitrary three-dimensional vectors onto a plane tangent to the unit sphere at \mathbf{x}.

- Goal: Construct good numerical approximations to

$$
\mathcal{D}_{x}=\mathbf{p}_{x} \cdot \nabla, \quad \mathcal{D}_{y}=\mathbf{p}_{y} \cdot \nabla, \quad \mathcal{D}_{z}=\mathbf{p}_{z} \cdot \nabla
$$

1) Global RBF method
2) Local RBF method: RBF-generated finite differences

- See problems 4-6 for more details on the global method.

Surface gradient approximation: Global RBF method

- Setup: $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$ and $\left.f\right|_{X}$ samples of a target function.
- ϕ is some differentiable PD or $\mathrm{CPD}(1)$ kernel on \mathbb{R}^{3}.
- RBF interpolant of $\left.f\right|_{X}$ is given by

$$
s(\mathbf{x})=\sum_{j=1}^{N} c_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)
$$

- The coefficients c_{j} are determined from:

$$
\underbrace{\left[\begin{array}{ccc}
\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) & \cdots \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{N}\right\|\right) \\
\phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{N}\right\|\right) \\
\vdots & \vdots & \ddots \\
\phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{N}-\mathbf{x}_{N}\right\|\right)
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]}_{\underline{c}}=\underbrace{\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{N}
\end{array}\right]}_{\underline{f}}
$$

- Discretization of the projected gradient closely follows Flyer \& W $(2007,2009)$.

Surface gradient approximation: Global RBF method

- Approximate the x-component of the surface gradient using collocation:

$$
\begin{aligned}
\left.\mathbf{p}_{x} \cdot \nabla s(\mathbf{x})\right]\left.\right|_{\mathbf{x}=\mathbf{x}_{j}} & =\left.\sum_{k=1}^{N} c_{k}\left[\mathbf{p}_{x} \cdot \nabla \phi_{k}\left(\left\|\mathbf{x}-\mathbf{x}_{k}\right\|\right)\right]\right|_{\mathbf{x}=\mathbf{x}_{j}}, \quad j=1, \ldots, N \\
& =\sum_{k=1}^{N} c_{k} \underbrace{\left.\left[x_{j} \mathbf{x}_{j}^{T} \mathbf{x}_{k}-x_{k}\right]\left(\frac{\phi_{k}^{\prime}\left(\left\|\mathbf{x}-\mathbf{x}_{k}\right\|\right)}{\left\|\mathbf{x}-\mathbf{x}_{k}\right\|}\right)\right|_{\mathbf{x}_{j}}}_{B_{j, k}^{x}}, j=1, \ldots, N \\
& =B^{x} \underline{c} \\
& =\left(B^{x} A^{-1}\right) \underline{f} \\
& =D_{N}^{x} \underline{f}
\end{aligned}
$$

- D_{N}^{x} is an N-by- N differentiation matrix (DM).
- It represents the discrete RBF approximation to $\mathbf{p}_{x} \cdot \nabla$ at nodes X.
- DMs D_{N}^{y} and D_{N}^{z} can similarly be constructed for $\left(\mathbf{p}_{y} \cdot \nabla\right)$ and $\left(\mathbf{p}_{z} \cdot \nabla\right)$.

Global RBF collocation for transport equation

- Transport equation in Cartesian coordinates

$$
h_{t}+\mathbf{u} \cdot(P \nabla h)=0
$$

- Let h and $\mathbf{u}=(u, v, w)$ be sampled at X.
- Semi-discrete formulation (method-of-lines) of transport equation (see Problem 5):

$$
\underline{h}_{t}=-\left(\operatorname{diag}(\underline{u}) D_{N}^{x}+\operatorname{diag}(\underline{v}) D_{N}^{y}+\operatorname{diag}(\underline{w}) D_{N}^{z}\right) \underline{h}=-D_{N} \underline{h} .
$$

- Advance the system in time using some standard ODE solver.
- This is a purely hyperbolic problem and temporal stability can be an issue.
- We stabilize the method by including some high-order diffusion operator L_{N} (hyperviscosity):

$$
\underline{h}_{t}=-D_{N} \underline{h}+\mu L_{N} \underline{h}
$$

- L_{N} is a discrete approximation to a high power of the Laplacian: $\Delta^{2 k}$.

Numerical results: solid body rotation

- Solid body rotation of a non-smooth cosine bell
(Williamson et. al. JCP (1992))
Stream Function for flow

$$
\psi(\mathbf{x})=\cos (\alpha) z+\sin (\alpha) y \quad \alpha=\pi / 2 \text { (flow over the poles) }
$$

Initial condition (non-smooth: jump in second derivative)

$$
h(\mathbf{x})=\left\{\begin{array}{lll}
\frac{1}{2}(1+\cos (3 \pi r(\mathbf{x}))) & r(\mathbf{x})<1 / 3 \\
0 & r(\mathbf{x}) \geq 1 / 3
\end{array} \quad r(\mathbf{x})=\arccos (x)\right.
$$

Numerical results: solid body rotation

- Convergence results as number of nodes N increases (Flyer \& W, 2007)
- Error results are for one complete revolution of the cosine bell.

Cosine bell IC,
Discontinuous $2^{\text {nd }}$ derivative
Cosine bell test, $t=12$ days
log-log scale
Straight line indicates algebraic accuracy

Gaussian bell IC, Infinitely smooth
Gaussian bell test, $t=12$ days

log-linear scale
Straight line indicates spectral accuracy

Numerical results: solid body rotation

- Comparison to other high order methods (Flyer \& W, 2007)

Method	Cost per time-step	ℓ_{2} error	Time-step	Number of grid points	Code length (\# of lines)	Local mesh refinement
RBF	$\mathrm{O}\left(N^{2}\right)$	0.006	$1 / 2$ hour	4096	<40	yes
SH	$\mathrm{O}\left(M^{3 / 2}\right)$	0.005	90 seconds	32768	>500	no
DF	$\mathrm{O}(N \log N)$	0.005	90 seconds	32768	>100	no
DG	$\mathrm{O}\left(k N_{e}\right)$	0.005	6 minutes	7776	>1000	yes

$\mathrm{RBF}=$ radial basis functions, $\mathrm{SH}=$ spherical harmonics, $\mathrm{DF}=$ double Fourier,
$\mathrm{DG}=$ discontinuous Galerkin spectral elements

Comments:

- For RBF and DF $N=$ the number of grid points.
- For $\mathrm{SH} \quad M=$ total number of spherical harmonics: $(85+1)^{2}=7396$.
- For DG $N_{e}=$ total number of nodes per element, and $k=$ number of elements.

Numerical results: solid body rotation

- Comparison to other high order methods (Flyer \& W, 2007)

Method	Cost per time-step	ℓ_{2} error	Time-step	Number of grid points	Code length (\# of lines)	Local mesh refinement
RBF	$\mathrm{O}\left(N^{2}\right)$	0.006	$1 / 2$ hour	4096	<40	yes
SH	$\mathrm{O}\left(M^{3 / 2}\right)$	0.005	90 seconds	32768	>500	no
DF	$\mathrm{O}(N \log N)$	0.005	90 seconds	32768	>100	no
DG	$\mathrm{O}\left(k N_{e}\right)$	0.005	6 minutes	7776	>1000	yes

$\mathrm{RBF}=$ radial basis functions, $\mathrm{SH}=$ spherical harmonics, $\mathrm{DF}=$ double Fourier,
$\mathrm{DG}=$ discontinuous Galerkin spectral elements

Comments:

- For RBF and DF $N=$ the number of grid points.
- For $\mathrm{SH} \quad M=$ total number of spherical harmonics: $(85+1)^{2}=7396$.
- For DG $N_{e}=$ total number of nodes per element, and $k=$ number of elements.

Numerical results: solid body rotation

- Comparison to other high order methods (Flyer \& W, 2007)

Method	Cost per time-step	ℓ_{2} error	Time-step	Number of grid points	Code length (\# of lines)	Local mesh refinement
RBF	$\mathrm{O}\left(N^{2}\right)$	0.006	$1 / 2$ hour	4096	<40	yes
SH	$\mathrm{O}\left(M^{3 / 2}\right)$	0.005	90 seconds	32768	>500	no
DF	$\mathrm{O}(N \log N)$	0.005	90 seconds	32768	>100	no
DG	$\mathrm{O}\left(k N_{e}\right)$	0.005	6 minutes	7776	>1000	yes

$\mathrm{RBF}=$ radial basis functions, $\mathrm{SH}=$ spherical harmonics, $\mathrm{DF}=$ double Fourier, $\mathrm{DG}=$ discontinuous Galerkin spectral elements

- Need ways to reduce this cost.
- Next method we discuss is focused on this.

RBF generated finite differences (RBF-FD)

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

- Generalization of finite-difference (FD) method to scattered nodes using RBFs to compute the FD weights.
- References:
- W \& Fornberg (2006)
- Fornberg \& Lehto (2011)
- Flyer, Lehto, Blaise, W \& St-Cyr (2012)
- Bollig, Flyer \& Erlebacher (2012)

RBF generated finite differences

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

1. For each node \mathbf{x}_{j}, choose $n-1$ of it's nearest neighbors: $X_{j}=\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$, with $\mathbf{x}_{1}=\mathbf{x}_{j}$.
2. Approximate $\left.\mathbf{p}_{x} \cdot \nabla f\right|_{\mathbf{x}_{j}}$ using linear a combination of the values of f sampled at X_{j} :

$$
\left.\mathbf{p}_{x} \cdot \nabla f\right|_{\mathbf{x}_{j}}=\sum_{i=1}^{n} c_{i} f\left(\mathbf{x}_{i}\right)
$$

RBF generated finite differences

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

3. Choose the weights c_{i} such the approximation is exact for

$$
\left\{\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{k}\right\|\right)\right\}_{k=1}^{n}:
$$

$$
\left.[\underbrace{\mathbf{p}_{x} \cdot \nabla}_{\mathcal{D}_{x}} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{k}\right\|\right)]\right|_{\mathbf{x}=\mathbf{x}_{1}} \equiv \sum_{i=1}^{n} c_{i} \phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{k}\right\|\right), k=1, \ldots, n
$$

Similar to standard FD formulas that use polynomials.

RBF generated finite differences

- Consider $X=\left\{\mathbf{x}_{j}\right\}_{j=1}^{N} \subset \mathbb{S}^{2}$, where $\mathbf{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$:

Key Steps:

3. The weights $\left\{c_{i}\right\}_{i=1}^{n}$ can be computed by solving:

$$
\left[\begin{array}{ccc}
\phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{n}\right\|\right) \\
\phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{2}-\mathbf{x}_{n}\right\|\right) \\
\vdots & \vdots & \ddots \\
\phi\left(\left\|\mathbf{x}_{n}-\mathbf{x}_{1}\right\|\right) & \phi\left(\left\|\mathbf{x}_{n}-\mathbf{x}_{2}\right\|\right) \cdots \phi\left(\left\|\mathbf{x}_{n}-\mathbf{x}_{n}\right\|\right)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{D}_{x} \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{1}\right\|\right) \\
\mathcal{D}_{x} \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|\right) \\
\vdots \\
\mathcal{D}_{x} \phi\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{n}\right\|\right)
\end{array}\right]
$$

4. Combine all the weights into a differentiation matrix.

RBF generated finite differences

- Example differentiation matrix (DM) for $N=16384, n=101$:

- Compare to the global RBF method, which results in a dense differentiation matrix.

RBF-FD method for transport equation

- Transport equation in Cartesian coordinates

$$
h_{t}+\mathbf{u} \cdot(P \nabla h)=0
$$

- Let h and $\mathbf{u}=(u, v, w)$ be sampled at X.
- Semi-discrete formulation (method-of-lines) of transport equation (see Problem 5):

$$
\underline{h}_{t}=-\left(\operatorname{diag}(\underline{u}) D_{N}^{x}+\operatorname{diag}(\underline{v}) D_{N}^{y}+\operatorname{diag}(\underline{w}) D_{N}^{z}\right) \underline{h}=-D_{N} \underline{h} .
$$

- Advance the system in time using some standard ODE solver.
- This is a purely hyperbolic problem and temporal stability can be an issue.
- We stabilize the method by including some high-order diffusion operator L_{N} (hyperviscosity):

$$
\underline{h}_{t}=-D_{N} \underline{h}+\mu L_{N} \underline{h}
$$

- L_{N} is a discrete approximation to a high power of the Laplacian: $\Delta^{2 k}$.

Numerical results: solid body rotation

- Solid body rotation of a non-smooth cosine bell
(Williamson et. al. JCP (1992))
Stream Function for flow

$$
\psi(\mathbf{x})=\cos (\alpha) z+\sin (\alpha) y \quad \alpha=\pi / 2 \text { (flow over the poles) }
$$

Initial condition (non-smooth: jump in second derivative)

$$
h(\mathbf{x})=\left\{\begin{array}{lll}
\frac{1}{2}(1+\cos (3 \pi r(\mathbf{x}))) & r(\mathbf{x})<1 / 3 \\
0 & r(\mathbf{x}) \geq 1 / 3
\end{array} \quad r(\mathbf{x})=\arccos (x)\right.
$$

Numerical results: solid body rotation

- Convergence results as number of nodes N increases (Fornberg \& Lehto, 2011)
- Error results are for 10 complete revolution of the cosine bell.

- Errors compare favorably with the global RBF method.
- RBF-FD method much more computationally efficient than global method.

RBF-FD for shallow water wave eqs.

- Numerical simulation: Flow over an isolated mountain
(Test Case 5 from Williamson et. al., JCP (1992))
- See Flyer et. al., JCP (2012)

Remarks regarding solving PDEs

- The Global RBF collocation method is competitive in terms of accuracy per degree of freedom.
- It are not competitive in terms of computational complexity.
- The RBF generated finite difference (RBF-FD) method shows great promise in terms of accuracy and computational cost.
- Comparisons with other state-of-the art methods have been done (Flyer et. al. 2012) and show the RBF-FD is competitive in terms of accuracy and computational complexity.
- Parallelization on multi-GPU has already been implemented (Bollig, Flyer, \& Erlebacher, 2012).
- Research Ideas for RBF-FD method
- Extend method to advection-reaction-diffusion on the sphere.
- Extend method to non-uniform nodes (static/adaptive refinement)
- Extend method to more general surfaces
- Develop method for the hemisphere.
- Develop method for 3D spherical shell
- Incorporate into immersed boundary type setting for 2D or 3D problems.
- Couple surface PDEs to PDEs in the bulk medium.

