2014 Montestigliano Workshop

Radial Basis Functions
for Scientific Computing

Grady B. Wright
Boise State University

"This work is supported by NSF grants DMS 0934581

2014 Montestigliano Workshop

Part II: Advanced
Techniques

Grady B. Wright

Boise State University

"This work is supported by NSF grants DMS 0934581

Localized bases Purt

Localized bases for “scale-independent”
radial kernels

Review: RBF interpolation

Key idea: linear combination of translates
and rotations of a single radial kernel:

o(7)

A

T

Basic RBF Interpolant for Q) C R?

Ixf(x ZCJ (IIx = %;]])

Linear svstem for determining the interpolation coefficients

Part 2

f X={x}L,cQ f .= {f;}i5,

] I
) ',“ ik ity ’l!
mg' ll! \Vll
.' .';I' ./" ‘“ i ll‘l ‘

[p([]x1 —x1])
o(|[x2 — x1]])
$(llx — %)

A% = %2} - o([lx1 —=xn()] [er] [f1] |
o(||x2 — x2]) - - - d(||x2 — xn]|) Cs f Ax is guaranteed to be
= | positive definite if
: : : ¢ is positive definite.
Ollxy —xaf))- - o(llxny —xn[)] len] [fn

Ax

N~— —~—
L J

Localized bases

Part 2
e “Scale independent” kernels.
Ex: ¢(r) = r3 o(r) = r? log r

1 1
Issues:
 For large N, interpolation

0.5 matrices are dense.
0.5
e Matrices are not nice for
0 iterative methods.
0
0 05 1 0 05 1 1.5

e Ideas for constructing a better basis:

o0 Difference functionals: Dyn, Levin & Rippa; Sibson & Stone; Beatson, Levesley,
& Mouat.

O Approximate cardinal functions: Beatson & Powell; Faul & Powell; Beatson,
Cherrie, & Mouat.

O Orthonormal: Schaback & Miiller; Schaback & Pazouki; De Marchi & Santin

Lagrange functions on the sphere -

Restrict our attention to Q2 = S? and ¢ (r) = r2(6—1) log(r)

Standard N ¢ N
RBF sx(x) =Y cioulllx—x;]1) + D brpr(x) b= D ejpulx;) =0, 1 < k< 2
=1 k=1

interpolant: j=1

N . :

Lagrange _ , , (x) — L=y

P sX<x>—§;LJ<x>fj, Lz<xg>—{0 Pt
j:

Lagrange functions on the sphere -

Restrict our attention to = S? and qbg(fr) = r2(t=D Jog(7)

Standard N
RBF Sx ch(bg |x —x;|]) —|—Zbkpk chpk(xj) =0, 1<k< /1’
interpolant: j=1

form:

N 1 1=7
Lagrange sx(x) =) Lj(x)fj, Li(Xj):{O z#i

Results on the Lagrange functions for quasi-uniform X:
(Hangelbroek, Narcowich, Sun, Ward)

1. Lagrange basis is local (HNW, 2010):

|L;(x)] < Cexp {_V%}

2. Lebesgue constant is bounded (HNW, 2010):

Lx ::maXZ|L) <C

xXES?2 4

3. Lagrange basis is stable (HNSW, 2011)

Local Lagrange functions on the sphere
Part 2

X = {Xj}j.\’zl C S2 Algorithm: For:=1,..., N

ey, 1. Choose n << N nearest neighbors to x;:
o X = {x\}7, C X
. 2. Construct the local Lagrange function on X:
el L LR N n I
SRR Li(x) = cige(lx =) + > brpr(x)
A0 .o.::.: .: :... .: :-:.:-::' .: .:':.::3,33 j=1 k=1

Local Lagrange functions on the sphere
Part 2

Algorithm: For:=1,..., N
1. Choose n << N nearest neighbors to x;:

2. Construct the local Lagrange function on X:

° o o o o o ° ° o -
mmmmmmmmm

Local Lagrange functions on the sphere
Part 2

Algorithm: For:=1,..., N
1. Choose n << N nearest neighbors to x;:

2. Construct the local Lagrange function on X:

n 02
Lix) = S doulllx — <) + S bepi(x)
j=1 k=1

Estimates: (FHNWW, 2013)

If each Zj (x) is constructed from n = M (log V)?
neighbors then

|L; = Ljlleo < C %
L;(x)| < C(1 + dist(x,x;)/hx) "~

Interpolation matrices

Part 2
 Example: N=1024, n="70
Standard basis: Approximate Lagrange basis:
N 4 N
sx(x) =) cipa(llx—x4|) +) brpr(x s(x :E 0, Lj(x
J=1 k=1 i1
Interpolation matrix Interpolation matrix
i : 14 1
12 100 0.9
’ 200 08
300 07
0.8
400 06
0.6
500 05
0.4
600 0.4
0.2
700 - loa
- o
800 B P
- +-02
900 _ doa
- Ho04
1000 _ o

100 200 300 400 500 600 700 800 900 1000

Solving “preconditioned” systems

Part 2

N
* Numerical experiment: s(x) = Z a;L;(x)
71=1
o Target f: random values distributed between [—1, 1]. oo
o Ej constructed from n = 7[(log;y N)?| neighbors ,;

o Systems solved using GMRES iterative method (Saad & Schultz, 1986)

: 44 S 79
Solving “preconditioned” systems .

N
« Numerical experiment: s(x) = Z a;L;(x) R
71=1

fece®
o
fe%eee

o Target f: random values distributed between [—1, 1].

3 ::..

o Zj constructed from n = 7[(log;y N)?| neighbors :

L
Whdis s s

o Systems solved using GMRES iterative method (Saad & Schultz, 1986)
Number GMRES iterations

tol =107° | tol = 1078 | tol = 10710 | tol = 10712
N n PX [cosahedral nodes
2562 84 | 1.650 7 8 9 10
10242 | 119 | 1.679 5 7 8 9
23042 | 140 | 1.688 6 7 8 9
40962 | 154 | 1.693 5 7 7 8
92162 | 175 | 1.688 6 8 9 10
163842 | 196 | 1.701 5 7 7 8

Note: FEach iteration takes (O(N?) operations, but may be reduced to
O(N log N) using NFFT (Keiner, Kunis, & Potts, 2006). Project?

Solving “preconditioned” systems

Part 2
. . Al EFTET
* Numerical experiment: s(x) = E a;L;(x) PRI
_1 c{v'..:o o oo ' ': ..:":'}.‘
g l’::.-..'.. oo . .'. .}5
3 3 f:c. ".. ..o.' ...' ..- * e :. .o‘
o Target f: random values distributed between [—1, 1]. L R

o Zj constructed from n = 7[(log;y N)?| neighbors

o Systems solved using GMRES iterative method (Saad & Schultz, 1986)

Number GMRES iterations
tol =107° | tol = 1078 | tol = 10710 | tol = 10712
N n PX Hammersley nodes
4000 91 | 24.56 8 10 11 12
8000 | 112 | 34.74 8 9 11 12
16000 | 126 | 49.13 7 9 10 11
32000 | 147 | 69.48 7 8 10 11
64000 | 168 | 98.26 7 9 10 12

Note: Also appears to work well for less uniform nodes,
but no theory (yet!).

Concluding remarks on local Lagrange basis S

e Local Lagrange basis appears to provide a good bases for certain kernel
spaces on S2.
— Can be computed using O(N (log N)?) nearest neighbors.
— Computation is embarrassingly parallel.

— Works very well as a preconditioner for global interpolation problem.

e Research problems:
— Combine with fast evaluation algorithms to compute interpolation
coefficients for the global interpolant in total of O(N log(N)?).
— Use local Lagrange basis as a quasi-interpolant.

— Use local Lagrange basis as trial functions in a Galerkin formulation
of PDEs on the sphere. (Need quadrature formulas for the sphere.)

Quadrature
Part 2

Using RBF interpolation for developing
quadrature formulas on the sphere

Quadrature on the sphere

o Problem: Given X = {x};L, C S, find weights {wj}jyzl such that

s Eh

S du(x) ~ 3 wif(xg) = Q). f € O(E)

e One solution: Find the weights from the kernel interpolant of f on X:
FOOdu(x) ~ [sx(xdu(x
S2 S2

e So what are the weights?

Quadrature on the sphere

o Problem: Given X = {x};L, C S, find weights {wj}jyzl such that

s Eh

S du(x) ~ 3 wif(xg) = Q). f € O(E)

e One solution: Find the weights from the kernel interpolant of f on X:
FOOdu(x) ~ [sx(xdu(x
S2 S2

e So what are the weights?

Lagrange form : sx (x)du(x) = i (/82 L; (X)dﬂ(x)) J

82]:1\ J

-~

Wi

e How can this be made computationally tractable for large N7

Quadrature on the sphere

e A neat results for radial (zonal) kernels:

[ot zg(o(x = x,)dx))

-
N C2
:(/S O(|Ix — x1[))dp(x)Z SRR
= N

_ 11 _

I

f

Shl 1 e 1] dke-xl) ||

L - _fN_

[wl Wo V wa}

e So the weights can be computed from solving one linear system.

Quadrature on the sphere Part 2

e Problem: Given X = {X}N , C S%, find weights {w]}N , such that

ngf x;) = Q(f), fe€C(S?

e One solution: Find the weights from the kernel interpolant of f

w1 JO
o(]|xi — x;]|) | =

WN Jo

Quadrature on the sphere

Part 2

e Problem: Given X = {X}N , C S%, find weights {wJ}N , such that
!f.’{':"'."ffih,{’

~ Zwmxj) = Q(f), feC(S?

e One solution: Find the weights from the kernel interpolant of f

w1 J()
o(]|xi — x;]|) | =

WN Jo

e Note that this idea can be extended to CPD kernels as well (See problem 7):

Zc]gbg (IIx = x;1)) +Zbkpk), ¢e(r) =r*""Vlog(r)

N
{thf|CT(S2) 0<r < 20

Error: f(x)du(x) — Y w;fi| <
(FENWW2014) | J 52 Z Y Wl fllarsy 1<r </

Quadrature on the sphere Part 2

e Problem: Given X = {X} ', C S?, find weights {wj} ', such that

() =~ Zwmxj) = Q(f), feC(s)

e One solution: Find the weights from the kernel interpolant of f

w1 Jo

o([|xi — x;l|) | =

WN Jo

e Note that this idea can be extended to CPD kernels as well (See problem 7):

N

sx(x) =) ¢;oulllx —) +Zbkpk . ¢u(r) =7V log(r)

71=1

e How ELSE can this be made computationally tractable for large N
Local Lagrange basis!

Example of quadrature weights

Part 2
e Quadrature weights computed using N=23042, icosahedral nodes
$a(r) = r? log(r) -)
6
o COI.nputatlons don.e.usmg local Lagrange / le s
basis as a preconditioner
15
{4.5

4

3.5
N=22501, Fibonacci nodes c10 N=22500, Quasi-min. energy “
, x 10
ol ;“ . " {.} N 62
59 Y- /‘,' = PSS @ e 3
£ * o ovel ,,c“l'*g- £y
5.8 o DRI 6
; AL &
£ ‘,’ﬁ,".. i
15.7 E - Yo & 58
56 P P " ‘,\" 3 .t(.'s ,'lw .
&t) . ‘ﬁ“ ‘," LY 54 ‘.. ‘; ?
» - & 5 " .a' (J‘
15.5 ; S ‘\ .l " 15.6
e . % s ¥
by e ‘}: .‘ $! 4 ; [ﬁ"\"
o 1f
S
“}

()

5.4 Vi 3 ” 4
l"..~‘} § :' .‘,)‘) L i 54
5.3 ’ g ’ %
5 s e
. “{'}u " b ;» 5.2

Borodachov, Hardin, Saff (2014)

Numerical example
Part 2

Smooth target function

120

100

1-20

+-40

Relative error

Numerical example

—— Min. Energy
—&A— Tcosahedral

—o©6— Fibonacci

..... - N2

Part 2

1 ¢ Weights computed

up to N = 650000

| o Convergence is O(h%).

Remarks on RBF-based quadrature

Part 2

e Quadrature weights can be computed by solving one linear system.

e For large N, these weights can be computed in O(N?) operations for the
thin plate spline using the local Lagrange functions as a preconditioner.

e Research problems:

— Develop a fast evaluation algorithm to compute weights in O(N log(N)?).

— Simply use the local Lagrange functions to compute the quadrature
weights (using a a quasi-interpolant instead of an interpolant).

— Use the quadrature weights for computing the integrals associated
with a Galerkin formulation of some PDEs on the sphere. (Use local
Lagrange functions as the trial functions.)

— Develop local Lagrange functions and quadrature weights for more
general ellipsoids.

RBF-PUM

Part 2

Combining RBFs and the Partition-of-Unity
method for interpolation (RBF-PUM)

RBFs and partition-of-unity on the sphere

Part 2

o Consider X = {x;}1; C S?, where x; = (z;,y;,2):

Key references:
« . Babuska & J.M. Melenk. The partition of unity method. IJNME (1998).

 R. Cavoretto & A. DeRossi, Fast and accurate interpolation of large

scattered data sets on the sphere. J. Comput. Appl. Math. (2010)
o First application of PUM to RBF interpolation on the sphere

RBFs and partition-of-unity on the sphere

Part 2

o Consider X = {x;}1; C S?, where x; = (z;,y;,2):

Key Steps:

1. Generate a set of overlapping patches (spherical caps) Q = {Q}L,
with the properties:

(a) Each patch contains roughly n nodes of X.

(b) () =5
k=1

RBFs and partition-of-unity on the sphere

Part 2

o Consider X = {x;}1; C S?, where x; = (z;,y;,2):

M total patches

n nodes per patch

&, = center of patch €2,
Key Steps:

1. Generate a set of overlapping patches (spherical caps) Q = {Q}L,
with the properties:

(a) Each patch contains roughly n nodes of X.

(b) () =5
k=1

RBFs and partition-of-unity on the sphere

Part 2

o Consider X = {x;}1; C S?, where x; = (z;,y;,2):

M total patches

n nodes per patch

&, = center of patch €2,
Key Steps:

2. Letting X; denote the set of nodes in patch (1, construct RBF
interpolants s, for k =1,..., M:

RBFs and partition-of-unity on the sphere

Part 2

o Consider X = {x;}1; C S?, where x; = (z;,y;,2):

M total patches
n nodes per patch
&, = center of patches €2,

Key Steps:

3. Define weight functions wy, : S* - R, k= 1,..., M, such that:
(a) Each wy is compactly supported over 2.
(b) The set of all wy form a partition-of-unity over €2:

M
Zwk(x) =1, x €
k=1

RBFs and partition-of-unity on the sphere

Part 2

o Consider X = {x;}1; C S?, where x; = (z;,y;,2):

M total patches
n nodes per patch
&, = center of patches (2,

Key Steps:

3. Define weight functions wy, : S* - R, k= 1,..., M, such that:
(a) Each wy is compactly supported over 2.
(b) The set of all wy form a partition-of-unity over €2:

M
Zwk(x) =1, x €
k=1

RBFs and partition-of-unity on the sphere

Part 2

o Consider X = {x;}1; C S?, where x; = (z;,y;,2):

M total patches

n nodes per patch

&, = center of patches (2,
Key Steps:

Weight function details:

w(x) = —2EC o = (=)

M Pk
Z wz (X) pr = radius of patch €2
1=1

® has compact support over [0, 1]
(Shepard weight function) Ex: 1 = cubic B-spline

RBFs and partition-of-unity on the sphere

Part 2

o Consider X = {x;}1; C S?, where x; = (z;,y;,2):

M total patches
n nodes per patch
&, = center of patches (2,

Key Steps:

4. Create a global interpolant for X as

sx(x) = Z W (X) sk (x)
k=1

Example for choosing the nodes and patches o

Nodes: We use the mazimal determinant (MD) node sets, which are
quasi-uniformly distributed over the sphere. R.S. Womersley, I. Sloan (2001)

Patches: We use minimum energy (ME) points, which are also quasi-
uniformly distributed over the sphere. D.P. Hardin, E.B. Saff (2004)

~ Patch
’ A centers

Parameters: Given N nodes, there are 2 parameters to choose for
determining the total number of patches M:
o n = approx. number of nodes in each patch;

o ¢ = measure of the amount the patches overlap.

Choosing the nodes and patches

e Using the quasi-uniformity of the nodes and patches, we compute
the radii of the patches using the approximation:
4 wp? n
N~ n P N
 The overlap parameter ¢ determines the average number of
patches a node belongs to, and satisfies the relationship:

4r wp? N
M q [q n w

Part 2

Choosing the nodes and patches

Part 2

e Illustration of the patches for N=4096, n=100, and different ¢:

Comparison to global RBF method

Global RBFs

—total nodes

Computational cost

Part 2

' M=total patches
¥ n—nodes per patch
q=avg. # patches

a node belongs to

N—=total nodes

Collocation

Global RBF

RBF-PUM?*

Construction:

O(N?)

O(n’M) + O(N log N)=
O(n*qN) + O(N log N)

Evaluation at K nodes:

O(KN)

O(¢n K)

Comparison to global RBF method

Part 2
Global RBFs

' M=total patches
¥ n—nodes per patch
q=avg. # patches

a node belongs to

N=total nodes N=total nodes

Accuracy Comparison:

e Theory for RBF-PUM interpolation in R? says same convergence
orders should be expected as global RBFs (although constants
involved are larger and depend strongly on the partitions).

e No theory on for S?, but should expect similar results.

Remarks on RBF-PUM

Part 2

e RBF-PUM interpolant has near-optimal computational scaling.
e Error estimates for the sphere still need to be worked out.

e Research problems:

— Develop RBF-PUM for non-uniform nodes on the sphere.

— Develop a multilevel (or multiscale) framework for fitting/filtering
data using RBF-PUM.

— Develop a PBF-PUM to solve PDEs, such as advection-reaction-
diffusion on the sphere. Use collocation or Galerkin method.

— Use RBF-PUM for geometric modeling (see problems 3 and 9).

RBFs for PDEs

Part 2

Computing derivatives and solving PDEs with RBFs

(Surface) Div, Grad, Curl, and all that

Spherical Coords.

Cartesian Coords.

Part 2

Point: (A, 6,1) (z,y, 2)
Unit vectors: 1= longitudinal i = z-direction
.l latitudinal JA y-direction
k = radial k = z-direction
—y —2z
Unit tangent vectors: i, j ¢ = ! T = ! -z
¢ - R Y R e
Unit normal vector: k X = zi+ yj + zk
: . dg: 09 . _ d9: , 9g9: 09+
Gradient of scalar g: us =V osf o\ i+ 599 u.=P(V.g)=P (3 i+ By j+ 3% ~k
. 1 Quy, Ov,
Surface divergence of u: V- u, 5 ax T ap (Ve) ue =V u.—x-V(u. - x)
. Of:, 1 0f:
Curl of a scalar f: u, =k x (Vof)=— YA YOX. u. =x X (PV.f) =QP(V.f) =Q(V.f)
Surface curl of a vector u: k- (V, x u,) = =V, - (k x u,) x-((PV,.) xu,)=-V.(Qu,)
1—22 —zy —z2 0 —z vy
Here: P=T—-xx"=| -2y 1-9> —yz | Q=|2 0 -z
—zz —yz 1—22 -y z 0

Ex: Transport equation on the sphere

Part 2

e Transport equation for a scalar valued
quantity h on the surface of the unit sphere
in an incompressible velocity field u,.

* The governing PDE can be written in
Cartesian coordinates as:

ht—l—uc-(PVch):O

P projects arbitrary three-dimensional vectors onto a plane tangent to the
unit sphere at x.

e Surface gradient operator:

(1—2%) —ay —Tz Oz Pz -V
PV,=1-xx"V, = — Ty (1—y?) —yz Oy| = |Py -V
—x2 —yz (1—-2%)| | 0. p. -V

No coordinate singularities!

Ex: shallow water equations on a rotating sphere s

o Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous,
and inviscid fluid layer.

\
hm
\J Y

e Jdealized test-bed for horizontal dynamics of all 3-D global climate models.

Equations Momentum Transport
Spherical | du, A Ih*
. T T\ S k 4 s V~] - 0 /. * —
coordinates| ot HUs - Volls + flo X s + gVsh BT + Vs (h'us) =0

Singularity at poles!

(e - PV,o)u. + f(x x u.) - i i+ (P1 Ve)h
(.- PVo)ve.+ f(x xu.)-j (PJ Ve)h
(u, - PV,)w,+ f(x xu,)- k + g(Pk -V,)h

oh*
ot

Cartesian | ou,
coordinates | ot

+ (PV¢:) - (h'u.) =0

Smooth over entire sphere!

Ex: Diffusion equation on the sphere —

« Diffusion of a scalar valued quantity v on
the surface of the unit sphere

2.5 .

* The governing PDE can be written in
Cartesian coordinates as:

15F 4

ur = Asu + f(t,u)
= (A, —xT2+x'VOV)u + f(t,u)

No coordinate singularities!

Approximating the surface gradient o

* We will illustrate how to approximate the surface gradient operator
using RBFs:

(1 —2%) —ay —xz Oy Py -V
PV=1-xx")V=| —xy (1—y?) —yz Oy| = |py-V
a2 —yz (1-27)] |0 p.- V|

P projects arbitrary three-dimensional vectors onto a plane tangent to the
unit sphere at x.

 Goal: Construct good numerical approximations to
Dy =p: -V, Dy:py'va D,=p. -V

1) Global RBF method
2) Local RBF method: RBF-generated finite differences

* See problems 4-6 for more details on the global method.

Surface gradient approximation: Global RBF method

o Setup: X = {x; }j\le C S? and f‘ samples of a target function.
X

e ¢ is some differentiable PD or CPD(1) kernel on RS.

e RBF interpolant of f‘ + 1s given by

s(x) = 3 eso(lx = 1)

e The coeflicients c; are determined from:

O(lx1 —xal]) oIk —x2fl) -+ dlllx1 —xn())] [1
¢(llxz = x1l) o(llx2 —xall) -~ dllx2 = xn) | |2 f2

(ln — xal) o(lxn — xall)--6(xw —xnlD Lew] v
N —~ P T
A c f

e Discretization of the projected gradient closely follows Flyer & W (2007,2009).

Surface gradient approximation: Global RBF method

e Approximate the x-component of the surface gradient using collocation:

N
P - Vs(x)] chk[Px'V¢k(||X—Xk||)] , j=1,...,N
X=X; k=1 X=X;
N /
X — X

= cx [1; %] X — wp) %l IR |

2 =l)|
Pk
= (B"A7Y) f

e D7 is an N-by-N differentiation matrix (DM) .
e It represents the discrete RBF approximation to p, - V at nodes X.

e DMs D%, and D5, can similarly be constructed for (p, - V) and (p. - V).

(Global RBEF' collocation for transport equation s

e Transport equation in Cartesian coordinates

e Let h and u = (u,v,w) be sampled at X.

e Semi-discrete formulation (method-of-lines) of transport equation
(see Problem 5):

h, = — (diag(u) Dy + diag(v) Dy + diag(w) Dy) b = —Dnh.

e Advance the system in time using some standard ODE solver.

e This is a purely hyperbolic problem and temporal stability can be an
issue.

— We stabilize the method by including some high-order diffusion operator
Ln (hyperviscosity):

ht = —-Dnh + ,ULNE

— Ly is a discrete approximation to a high power of the Laplacian: A?¥.

Numerical results: solid body rotation o

* Solid body rotation of a non-smooth cosine bell
(Williamson et. al. JCP (1992))

Stream Function for flow

w(x) — Cos(a) — Sin(a)y a = /2 (flow over the poles)

Initial condition (non-smooth: jump in second derivative)

_ (U tcos(Bar(x) r(x)<1/3
h(x)—{O Hx) > 1/3 (x) ()

Details:

* Gaussian RBF
At = 30 minutes
* No stabilization

required.

* Minimum energy

. : ' node sets used.
Flow direction Initial condition

Numerical results: solid body rotation o

Convergence results as number of nodes N increases (Flyer & W, 2007)
Error results are for one complete revolution of the cosine bell.

Cosine bell IC, Gaussian bell IC,
Discontinuous 2" derivative Infinitely smooth

Cosine bell test, t = 12 days Gaussian bell test, ¢t =12 days

—— 5 10 ¢

—tt— o,

—— 03

—e— l

Normalized error
Normalized error
'S

23 32 45 [y 56 64 20 30 40 50 /N 60
log-log scale log-linear scale

Straight line indicates algebraic accuracy Straight line indicates spectral accuracy

Numerical results: solid body rotation

Part 2
« Comparison to other high order methods (Flyer & W, 2007)

Method Cost per ¢, error Time-step Number of Code length Local mesh
time-step grid points (# of lines) refinement

RBF O(N?) 0.006 1/2 hour 4096 < 40 yes

SH O(M?3/2) 0.005 90 seconds 32768 > 500 no

DF O(Nlog N) 0.005 90 seconds 32768 > 100 no

DG O(kNe) 0.005 6 minutes 7776 > 1000 yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier,
DG=discontinuous Galerkin spectral elements

Comments:
« For RBF and DF N = the number of grid points.

* For SH M = total number of spherical harmonics: (85+1)? = 7396.
 For DG N, = total number of nodes per element, and k=number of elements.

Numerical results: solid body rotation

Part 2
« Comparison to other high order methods (Flyer & W, 2007)

Method Cost per ¢, error Time-step Number of Code length Local mesh
time-step grid points (# of lines) refinement

RBF O(N?) 0.006 1/2 hour 4096 < 40 yes

SH O(M?3/2) 0.005 90 seconds 32768 > 500 no

DF O(Nlog N) 0.005 90 seconds 32768 > 100 no

DG O(kNe) 0.005 6 minutes 7776 > 1000 yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier,
DG=discontinuous Galerkin spectral elements

Comments:
« For RBF and DF N = the number of grid points.

* For SH M = total number of spherical harmonics: (85+1)? = 7396.
 For DG N, = total number of nodes per element, and k=number of elements.

Numerical results: solid body rotation

Part 2
« Comparison to other high order methods (Flyer & W, 2007)

Method Cost per ¢, error Time-step Number of Code length Local mesh
time-step grid points (# of lines) refinement

RBF O(N?) 0.006 1/2 hour 4096 < 40 yes

SH O(M?3/2) 0.005 90 seconds 32768 > 500 no

DF O(NlogN) 0.005 90 seconds 32768 > 100 no

DG O(kNe) 0.005 6 minutes 7776 > 1000 yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier,
DG=discontinuous Galerkin spectral elements

 Need ways to reduce this cost.

e Next method we discuss is focused on this.

RBF generated finite differences (RBF-FD)

Part 2

o Consider X = {x;}\| C S?, where x; = (x;,y;, 2;):

Generalization of finite-difference (FD) method to scattered
nodes using RBFs to compute the FD weights.

References:

W & Fornberg (2006)

Fornberg & Lehto (2011)

Flyer, Lehto, Blaise, W & St-Cyr (2012)

o
o
o
o Bollig, Flyer & Erlebacher (2012)

RBF generated finite differences

Part 2

o Consider X = {x;}\| C S?, where x; = (x;,y;, 2;):

Kevy Steps:

1. For each node x;, choose n — 1 of it’s nearest neighbors:
= {x;}1 ¢, with x; = x;.

2. Approximate p, - Vf ‘X_ using linear a combination of the
J

values of f sampled at X;:

Xj 1=1

RBF generated finite differences

Part 2
o Consider X = {x;}\| C S?, where x; = (x;,y;, 2;):

Kevy Steps:

3. Choose the weights ¢; such the approximation is exact for

1(x1 = xkl]) Jr=1:

Pz -V o(lIx — xkl])]
——
Da:

=) ao(xi —xxl), k=1,....n
—X1 1=1

X

Similar to standard FD formulas that use polynomials.

RBF generated finite differences

Part 2
o Consider X = {x;}\| C S?, where x; = (x;,y;, 2;):
Key Steps:
3. The weights {c;}_; can be computed by solving:
O(|lx1 = xa]]) o(l[x1 —x2[])- - o([[x1 = xul)| [er] [Dad(llx1 —x1l])]

P(llx2 — x1]) &(l|x2 — x2|)- - d(||x2 — xnl]) | |2 Doo(|[x1 — x2]|)

(1% — x1ll) B30 — 32)- B30 — %al)| Len] | Dud(llx1 — xall).

4. Combine all the weights into a differentiation matrix.

RBF generated finite differences

Part 2

* Example differentiation matrix (DM) for N=16384, n=101:

Percent full=0.62

2000

4000 -

6000

8000 -

10000 |-

12000 |-

14000

16000 -

1 1 L 1 Il 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000
nz = 1654784

* Compare to the global RBF method, which results in a dense
differentiation matrix.

RBF-FD method for transport equation

Part 2

e Transport equation in Cartesian coordinates

e Let h and u = (u,v,w) be sampled at X.

e Semi-discrete formulation (method-of-lines) of transport equation
(see Problem 5):

h, = — (diag(u) Dy + diag(v) Dy + diag(w) Dy) b = —Dnh.

e Advance the system in time using some standard ODE solver.

e This is a purely hyperbolic problem and temporal stability can be an
issue.

— We stabilize the method by including some high-order diffusion operator
Ln (hyperviscosity):

ht = —-Dnh + ,ULNE

— Ly is a discrete approximation to a high power of the Laplacian: A?¥.

Numerical results: solid body rotation

Part 2
* Solid body rotation of a non-smooth cosine bell
(Williamson et. al. JCP (1992))
Stream Function for flow
Y(x) = cos(a)z + sin(a)y a = /2 (flow over the poles)

Initial condition (non-smooth: jump in second derivative)

_ (U tcos(Bar(x) r(x)<1/3
h(x)—{o Hx) > 1/3 (x) ()

Details:

* Gaussian RBF

e Stabilization
required.

* Minimum energy

node sets used.

Flow direction Initial cndition

Numerical results: solid body rotation

Part 2

Convergence results as number of nodes N increases (Fornberg & Lehto, 2011)
Error results are for 10 complete revolution of the cosine bell.

10
e
Q
0
o 10
N
~
)
N
=
g 407
Qo
e —x—n =17
-8 -n=231
-—0O0— n =50
A =74
4| L—=2—n =101
10 : '

Errors compare favorably with the global RBF method.
RBF-FD method much more computationally efficient than global method.

{Global RBF Method

RBF-FD for shallow water wave eqs.

Part 2
* Numerical simulation: Flow over an isolated mountain
(Test Case 5 from Williamson et. al., JCP (1992))
* See Flyer et. al., JCP (2012)
Time = 0.000 days
5900
5800
5700
15600
15500
15400
5300
5200
5100

5000

-150 -100 -50 0 50 100 150

Remarks regarding solving PDEs

Part 2

The Global RBF collocation method is competitive in terms of accuracy per
degree of freedom.

It are not competitive in terms of computational complexity.

The RBF generated finite difference (RBF-FD) method shows great promise

in terms of accuracy and computational cost.

e Comparisons with other state-of-the art methods have been done (Flyer et. al.
2012) and show the RBF-FD is competitive in terms of accuracy and
computational complexity.

e Parallelization on multi-GPU has already been implemented (Bollig, Flyer, &
Erlebacher, 2012).

Research Ideas for RBF-FD method

Extend method to advection-reaction-diffusion on the sphere.

Extend method to non-uniform nodes (static/adaptive refinement)
Extend method to more general surfaces

Develop method for the hemisphere.

Develop method for 3D spherical shell

Incorporate into immersed boundary type setting for 2D or 3D problems.
Couple surface PDEs to PDEs in the bulk medium.

