2014 Montestigliano Workshop

Radial Basis Functions for Scientific Computing

Grady B. Wright Boise State University

^{*}This work is supported by NSF grants DMS 0934581

2014 Montestigliano Workshop

Part II: Advanced Techniques

Grady B. Wright Boise State University

^{*}This work is supported by NSF grants DMS 0934581

Localized bases for "scale-independent" radial kernels

Key idea: linear combination of translates and rotations of a single radial kernel:

 $\frac{\text{Basic RBF Interpolant for } \Omega \subseteq \mathbb{R}^2}{N}$

$$I_X f(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

Linear system for determining the interpolation coefficients

$$\underbrace{\begin{bmatrix} \phi(\|\mathbf{x}_{1}-\mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{1}-\mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{1}-\mathbf{x}_{N}\|) \\ \phi(\|\mathbf{x}_{2}-\mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{2}-\mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{2}-\mathbf{x}_{N}\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\|\mathbf{x}_{N}-\mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{N}-\mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{N}-\mathbf{x}_{N}\|) \end{bmatrix}}_{A_{X}} \underbrace{\begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{N} \end{bmatrix}}_{\underline{c}} = \underbrace{\begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{N} \end{bmatrix}}_{\underline{f}}$$

 A_X is guaranteed to be positive definite if ϕ is positive definite.

$$X = \{\mathbf{x}_j\}_{j=1}^N \subset \Omega, \quad f \Big|_X = \{f_j\}_{j=1}^N$$

Localized bases

• "Scale independent" kernels.

Issues:

- For large N, interpolation matrices are dense.
- Matrices are not nice for iterative methods.

- Ideas for constructing a better basis:
 - Difference functionals: Dyn, Levin & Rippa; Sibson & Stone; Beatson, Levesley, & Mouat.
 - Approximate cardinal functions: Beatson & Powell; Faul & Powell; Beatson, Cherrie, & Mouat.
 - Orthonormal: Schaback & Müller; Schaback & Pazouki; De Marchi & Santin

Lagrange functions on the sphere

Part 2

Restrict our attention to $\Omega = \mathbb{S}^2$ and $\phi_{\ell}(r) = r^{2(\ell-1)} \log(r)$

Standard
RBF
$$s_X(\mathbf{x}) = \sum_{j=1}^N c_j \phi_\ell(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{k=1}^{\ell^2} b_k p_k(\mathbf{x}) = \sum_{j=1}^N c_j p_k(\mathbf{x}_j) = 0, \ 1 \le k \le \ell^2$$

interpolant:
Lagrange $s_X(\mathbf{x}) = \sum_{j=1}^N L_j(\mathbf{x}) f_j, \quad L_i(\mathbf{x}_j) = \begin{cases} 1 & i = j \\ 0 & i \ne j \end{cases}$

Lagrange functions on the sphere

Restrict our attention to $\Omega = \mathbb{S}^2$ and $\phi_{\ell}(r) = r^{2(\ell-1)} \log(r)$

Standard **RBF** $s_X(\mathbf{x}) = \sum_{j=1}^N c_j \phi_\ell(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{k=1}^{\ell^2} b_k p_k(\mathbf{x}) = \sum_{j=1}^N c_j p_k(\mathbf{x}_j) = 0, \ 1 \le k \le \ell^2$ interpolant: Lagrange $s_X(\mathbf{x}) = \sum_{j=1}^N L_j(\mathbf{x}) f_j, \quad L_i(\mathbf{x}_j) = \begin{cases} 1 & i = j \\ 0 & i \ne j \end{cases}$

Results on the Lagrange functions for quasi-uniform X: (Hangelbroek, Narcowich, Sun, Ward)

1. Lagrange basis is local (HNW, 2010):

$$|L_j(\mathbf{x})| \le C \exp\left[-\nu \frac{\operatorname{dist}(\mathbf{x}_j, \mathbf{x})}{h_X}\right]$$

2. Lebesgue constant is bounded (HNW, 2010):

$$\mathcal{L}_X := \max_{\mathbf{x} \in \mathbb{S}^2} \sum_{j=1}^N |L_j(\mathbf{x})| \le C$$

3. Lagrange basis is stable (HNSW, 2011)

Local Lagrange functions on the sphere

- Algorithm: For $i = 1, \ldots, N$
- 1. Choose $n \ll N$ nearest neighbors to \mathbf{x}_i :

$$\mathbf{x}_i = \{\mathbf{x}_j^i\}_{j=1}^n \subset X$$

2. Construct the local Lagrange function on X:

$$\widetilde{L}_i(\mathbf{x}) = \sum_{j=1}^n c_j^i \phi_\ell(\|\mathbf{x} - \mathbf{x}_j^i\|) + \sum_{k=1}^{\ell^2} b_k p_k(\mathbf{x})$$

Local Lagrange functions on the sphere

Local Lagrange functions on the sphere

- Algorithm: For $i = 1, \ldots, N$
- 1. Choose $n \ll N$ nearest neighbors to \mathbf{x}_i :

$$\mathbf{x}_i = \{\mathbf{x}_j^i\}_{j=1}^n \subset X$$

2. Construct the local Lagrange function on X:

$$\widetilde{L}_i(\mathbf{x}) = \sum_{j=1}^n c_j^i \phi_\ell(\|\mathbf{x} - \mathbf{x}_j^i\|) + \sum_{k=1}^{\ell^2} b_k p_k(\mathbf{x})$$

<u>Estimates:</u> (FHNWW, 2013) If each $\widetilde{L}_j(\mathbf{x})$ is constructed from $n = M(\log N)^2$ neighbors then

$$\|\widetilde{L}_j - L_j\|_{\infty} \leq C \ h_X^J$$
$$|\widetilde{L}_j(\mathbf{x})| \leq C (1 + \operatorname{dist}(\mathbf{x}, \mathbf{x}_j) / h_X)^{-J}$$

Interpolation matrices

• Example: *N*=1024, *n*=70

Standard basis:

$$s_X(\mathbf{x}) = \sum_{j=1}^N c_j \phi_2(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{k=1}^4 b_k p_k(\mathbf{x})$$

Interpolation matrix

Approximate Lagrange basis:

$$s(\mathbf{x}) = \sum_{j=1}^{N} a_j \widetilde{L}_j(\mathbf{x})$$

Solving "preconditioned" systems

- Numerical experiment: $s(\mathbf{x}) = \sum_{j=1}^{N} a_j \widetilde{L}_j(\mathbf{x})$
 - Target f: random values distributed between [-1, 1].
 - \widetilde{L}_j constructed from $n = 7 \lceil (\log_{10} N)^2 \rceil$ neighbors
 - Systems solved using GMRES iterative method (Saad & Schultz, 1986)

Solving "preconditioned" systems

- Numerical experiment: $s(\mathbf{x}) = \sum_{j=1}^{n} a_j \widetilde{L}_j(\mathbf{x})$
 - Target f: random values distributed between [-1, 1].
 - \widetilde{L}_j constructed from $n = 7 \lceil (\log_{10} N)^2 \rceil$ neighbors
 - Systems solved using GMRES iterative method (Saad & Schultz, 1986)

			Number GMRES iterations				
			$tol = 10^{-6}$	$tol = 10^{-8}$	$tol = 10^{-10}$	$tol = 10^{-12}$	
N	n	ρ_X		Icosahedral nodes			
2562	84	1.650	7	8	9	10	
10242	119	1.679	5	7	8	9	
23042	140	1.688	6	7	8	9	
40962	154	1.693	5	7	7	8	
92162	175	1.688	6	8	9	10	
163842	196	1.701	5	7	7	8	

Note: Each iteration takes $\mathcal{O}(N^2)$ operations, but may be reduced to $\mathcal{O}(N \log N)$ using NFFT (Keiner, Kunis, & Potts, 2006). Project?

Solving "preconditioned" systems

- Numerical experiment: $s(\mathbf{x}) = \sum_{j=1}^{N} a_j \widetilde{L}_j(\mathbf{x})$
 - Target f: random values distributed between [-1, 1].
 - \widetilde{L}_j constructed from $n = 7 \lceil (\log_{10} N)^2 \rceil$ neighbors
 - Systems solved using GMRES iterative method (Saad & Schultz, 1986)

			Number GMRES iterations					
			$tol = 10^{-6}$	$tol = 10^{-8}$	$tol = 10^{-10}$	$tol = 10^{-12}$		
N	n	$ ho_X$		Hammersley nodes				
4000	91	24.56	8	10	11	12		
8000	112	34.74	8	9	11	12		
16000	126	49.13	7	9	10	11		
32000	147	69.48	7	8	10	11		
64000	168	98.26	7	9	10	12		

Note: Also appears to work well for less uniform nodes, but no theory (yet!).

Concluding remarks on local Lagrange basis

- Local Lagrange basis appears to provide a good bases for certain kernel spaces on \mathbb{S}^2 .
 - Can be computed using $\mathcal{O}(N(\log N)^2)$ nearest neighbors.
 - Computation is embarrassingly parallel.
 - Works very well as a preconditioner for global interpolation problem.
- Research problems:
 - Combine with fast *evaluation* algorithms to compute interpolation coefficients for the global interpolant in total of $\mathcal{O}(N \log(N)^2)$.
 - Use local Lagrange basis as a quasi-interpolant.
 - Use local Lagrange basis as trial functions in a Galerkin formulation of PDEs on the sphere. (Need quadrature formulas for the sphere.)

Using RBF interpolation for developing quadrature formulas on the sphere

• Problem: Given $X = \{\mathbf{x}\}_{j=1}^N \subset \mathbb{S}^2$, find weights $\{w_j\}_{j=1}^N$ such that

$$\int_{\mathbb{S}^2} f(\mathbf{x}) d\mu(\mathbf{x}) \approx \sum_{j=1}^N w_j f(\mathbf{x}_j) =: Q(f), \quad f \in C(\mathbb{S}^2)$$

Part 2

• One solution: Find the weights from the kernel interpolant of f on X:

$$\int_{\mathbb{S}^2} f(\mathbf{x}) d\mu(\mathbf{x}) \approx \int_{\mathbb{S}^2} s_X(\mathbf{x}) d\mu(\mathbf{x})$$

• So what are the weights?

• Problem: Given $X = {\mathbf{x}}_{j=1}^N \subset \mathbb{S}^2$, find weights ${w_j}_{j=1}^N$ such that

$$\int_{\mathbb{S}^2} f(\mathbf{x}) d\mu(\mathbf{x}) \approx \sum_{j=1}^N w_j f(\mathbf{x}_j) =: Q(f), \quad f \in C(\mathbb{S}^2)$$

• One solution: Find the weights from the kernel interpolant of f on X:

$$\int_{\mathbb{S}^2} f(\mathbf{x}) d\mu(\mathbf{x}) \approx \int_{\mathbb{S}^2} s_X(\mathbf{x}) d\mu(\mathbf{x})$$

• So what are the weights?

Lagrange form :
$$\int_{\mathbb{S}^2} s_X(\mathbf{x}) d\mu(\mathbf{x}) = \sum_{j=1}^N \underbrace{\left(\int_{\mathbb{S}^2} L_j(\mathbf{x}) d\mu(\mathbf{x}) \right)}_{w_j} f_j$$

• How can this be made computationally tractable for large N?

• A neat results for radial (zonal) kernels:

$$\int_{\mathbb{S}^2} s_X(\mathbf{x}) d\mu(\mathbf{x}) = \sum_{j=1}^N \left(\int_{\mathbb{S}^2} \phi(\|\mathbf{x} - \mathbf{x}_j\|) d\mu(\mathbf{x}) \right) c_j$$

$$= \left(\int_{\mathbb{S}^2} \phi(\|\mathbf{x} - \mathbf{x}_1\|) d\mu(\mathbf{x}) \right) \sum_{j=1}^N c_j = J_0 \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{bmatrix}$$

$$= J_0 \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \phi(\|\mathbf{x}_i - \mathbf{x}_j\|) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & &$$

• So the weights can be computed from solving one linear system.

• Problem: Given $X = \{\mathbf{x}\}_{j=1}^N \subset \mathbb{S}^2$, find weights $\{w_j\}_{j=1}^N$ such that $\int_{\mathbb{S}^2} f(\mathbf{x}) d\mu(\mathbf{x}) \approx \sum_{j=1}^N w_j f(\mathbf{x}_j) =: Q(f), \quad f \in C(\mathbb{S}^2)$

Part 2

• One solution: Find the weights from the kernel interpolant of $f|_{X}$

$$\phi(\|\mathbf{x}_i - \mathbf{x}_j\|) \quad \left[\begin{array}{c} w_1 \\ \vdots \\ w_N \end{array} \right] = \left[\begin{array}{c} J_0 \\ \vdots \\ J_0 \end{array} \right]$$

• Problem: Given $X = \{\mathbf{x}\}_{j=1}^N \subset \mathbb{S}^2$, find weights $\{w_j\}_{j=1}^N$ such that $\int_{\mathbb{S}^2} f(\mathbf{x}) d\mu(\mathbf{x}) \approx \sum_{j=1}^N w_j f(\mathbf{x}_j) =: Q(f), \quad f \in C(\mathbb{S}^2)$

• One solution: Find the weights from the kernel interpolant of $f|_{X}$:

$$\phi(\|\mathbf{x}_i - \mathbf{x}_j\|) \quad \left[\begin{array}{c} w_1 \\ \vdots \\ w_N \end{array} \right] = \left[\begin{array}{c} J_0 \\ \vdots \\ J_0 \end{array} \right]$$

• Note that this idea can be extended to CPD kernels as well (See problem 7):

$$s_{X}(\mathbf{x}) = \sum_{j=1}^{N} c_{j} \phi_{\ell}(\|\mathbf{x} - \mathbf{x}_{j}\|) + \sum_{k=1}^{\ell^{2}} b_{k} p_{k}(\mathbf{x}), \quad \phi_{\ell}(r) = r^{2(\ell-1)} \log(r)$$

Error:
(FHNWW2014)
$$\left| \int_{\mathbb{S}^{2}} f(\mathbf{x}) d\mu(\mathbf{x}) - \sum_{j=1}^{N} w_{j} f_{j} \right| \leq \begin{cases} h_{X}^{r} \|f\|_{C^{r}(\mathbb{S}^{2})} & 0 < r \leq 2\ell \\ h_{X}^{r} \|f\|_{H^{r}(\mathbb{S}^{2})} & 1 < r \leq \ell \end{cases}$$

• Problem: Given $X = \{\mathbf{x}\}_{j=1}^N \subset \mathbb{S}^2$, find weights $\{w_j\}_{j=1}^N$ such that $\int_{\mathbb{S}^2} f(\mathbf{x}) d\mu(\mathbf{x}) \approx \sum_{j=1}^N w_j f(\mathbf{x}_j) =: Q(f), \quad f \in C(\mathbb{S}^2)$

• One solution: Find the weights from the kernel interpolant of $f|_{\mathbf{x}}$:

$$\left[\begin{array}{c}\phi(\|\mathbf{x}_i - \mathbf{x}_j\|)\\\vdots\\w_N\end{array}\right] = \begin{bmatrix} J_0\\\vdots\\J_0\end{bmatrix}$$

• Note that this idea can be extended to CPD kernels as well (See problem 7):

$$s_X(\mathbf{x}) = \sum_{j=1}^N c_j \phi_\ell(\|\mathbf{x} - \mathbf{x}_j\|) + \sum_{k=1}^{\ell^2} b_k p_k(\mathbf{x}), \quad \phi_\ell(r) = r^{2(\ell-1)} \log(r)$$

• How ELSE can this be made computationally tractable for large NLocal Lagrange basis!

Example of quadrature weights

- Quadrature weights computed using $\phi_2(r) = r^2 \log(r)$
- Computations done using local Lagrange basis as a preconditioner

Borodachov, Hardin, Saff (2014)

Numerical example

 $Part\ \mathcal{2}$

Smooth target function

Numerical example

Remarks on RBF-based quadrature

- Quadrature weights can be computed by solving one linear system.
- For large N, these weights can be computed in $O(N^2)$ operations for the thin plate spline using the local Lagrange functions as a preconditioner.
- Research problems:
 - Develop a fast evaluation algorithm to compute weights in $\mathcal{O}(N \log(N)^2)$.
 - Simply use the local Lagrange functions to compute the quadrature weights (using a a quasi-interpolant instead of an interpolant).
 - Use the quadrature weights for computing the integrals associated with a Galerkin formulation of some PDEs on the sphere. (Use local Lagrange functions as the trial functions.)
 - Develop local Lagrange functions and quadrature weights for more general ellipsoids.

Combining RBFs and the Partition-of-Unity method for interpolation (RBF-PUM)

• Consider $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

Part 2

Key references:

- I. Babuška & J.M. Melenk. The partition of unity method. *IJNME* (1998).
- R. Cavoretto & A. DeRossi, Fast and accurate interpolation of large scattered data sets on the sphere. J. Comput. Appl. Math. (2010)
 o First application of PUM to RBF interpolation on the sphere

• Consider
$$X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$$
, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

Key Steps:

1. Generate a set of overlapping patches (spherical caps) $\Omega = {\{\Omega_k\}}_{k=1}^M$ with the properties:

(a) Each patch contains roughly n nodes of X.

(b)
$$\bigcup_{k=1}^{M} \Omega_k = \mathbb{S}^2.$$

• Consider
$$X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$$
, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

 $\begin{array}{l} M \mbox{ total patches} \\ n \mbox{ nodes per patch} \\ \xi_k = \mbox{ center of patch } \Omega_k \end{array}$

Key Steps:

- 1. Generate a set of overlapping patches (spherical caps) $\Omega = {\{\Omega_k\}}_{k=1}^M$ with the properties:
 - (a) Each patch contains roughly n nodes of X.

(b)
$$\bigcup_{k=1}^{M} \Omega_k = \mathbb{S}^2.$$

• Consider
$$X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$$
, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

 $\begin{array}{l} M \mbox{ total patches} \\ n \mbox{ nodes per patch} \\ \xi_k = \mbox{ center of patch } \Omega_k \end{array} \end{array}$

Key Steps:

2. Letting X_k denote the set of nodes in patch Ω_k , construct RBF interpolants s_k , for $k = 1, \ldots, M$:

$$s_k(\mathbf{x}) = \sum_{j=1}^n c_j^k \phi(\|\mathbf{x} - \mathbf{x}_j^k\|)$$

• Consider $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

 $\begin{array}{l} M \mbox{ total patches} \\ n \mbox{ nodes per patch} \\ \xi_k = \mbox{ center of patches } \Omega_k \end{array}$

Key Steps:

3. Define weight functions w_k : S² → R, k = 1,..., M, such that:
(a) Each w_k is compactly supported over Ω_k.
(b) The set of all w_k form a partition-of-unity over Ω:

$$\sum_{k=1}^{M} w_k(\mathbf{x}) \equiv 1, \ \mathbf{x} \in \Omega$$

• Consider $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

 $\begin{array}{l} M \mbox{ total patches} \\ n \mbox{ nodes per patch} \\ \xi_k = \mbox{ center of patches } \Omega_k \end{array}$

Key Steps:

3. Define weight functions w_k : S² → R, k = 1,..., M, such that:
(a) Each w_k is compactly supported over Ω_k.
(b) The set of all w_k form a partition-of-unity over Ω:

$$\sum_{k=1}^{M} w_k(\mathbf{x}) \equiv 1, \ \mathbf{x} \in \Omega$$

• Consider
$$X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$$
, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

 $\begin{array}{l} M \mbox{ total patches} \\ n \mbox{ nodes per patch} \\ \xi_k = \mbox{ center of patches } \Omega_k \end{array}$

Key Steps:

Weight function details:

$$w_{k}(\mathbf{x}) = \frac{\psi_{k}(\mathbf{x})}{M} \longrightarrow \psi_{k}(\mathbf{x}) = \psi\left(\frac{\|\mathbf{x} - \boldsymbol{\xi}_{k}\|}{\rho_{k}}\right)$$
$$\sum_{i=1}^{M} \psi_{i}(\mathbf{x}) \qquad \qquad \rho_{k} = \text{radius of patch } \Omega_{k}$$
$$\psi \text{ has compact support over } [0,1]$$
$$\text{Ex: } \psi = \text{cubic B-spline}$$

• Consider
$$X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$$
, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

 $\begin{array}{l} M \mbox{ total patches} \\ n \mbox{ nodes per patch} \\ \xi_k = \mbox{ center of patches } \Omega_k \end{array}$

Key Steps:

4. Create a global interpolant for X as

$$s_X(\mathbf{x}) = \sum_{k=1}^M w_k(\mathbf{x}) s_k(\mathbf{x})$$

Example for choosing the nodes and patches

<u>Nodes</u>: We use the *maximal determinant* (MD) node sets, which are quasi-uniformly distributed over the sphere. R.S. Womersley, I. Sloan (2001)

<u>Patches</u>: We use *minimum energy* (ME) points, which are also quasiuniformly distributed over the sphere. D.P. Hardin, E.B. Saff (2004)

<u>Parameters</u>: Given N nodes, there are 2 parameters to choose for determining the total number of patches M:

- \circ n = approx. number of nodes in each patch;
- \circ q = measure of the amount the patches overlap.

Choosing the nodes and patches

• Using the quasi-uniformity of the nodes and patches, we compute the **radii of the patches** using the approximation:

$$\frac{4\pi}{N} \approx \frac{\pi \rho^2}{n} \quad \Longrightarrow \quad \rho \approx 2\sqrt{\frac{n}{N}}$$

• The overlap parameter q determines the **average number of patches a node belongs to**, and satisfies the relationship:

$$\frac{4\pi}{M} \approx \frac{\pi \rho^2}{q} \quad \Longrightarrow \quad M = \left\lceil q \frac{N}{n} \right\rceil$$

Choosing the nodes and patches

• Illustration of the patches for N=4096, n=100, and different q:

Comparison to global RBF method

M=total patches n=nodes per patch $q=avg. \ \# \ patches$ a node belongs to

Computational cost

Collocation	Global RBF	RBF-PUM*
Construction:	$O(N^3)$	$egin{array}{rllllllllllllllllllllllllllllllllllll$
Evaluation at K nodes:	O(KN)	O(q n K)

Comparison to global RBF method

Accuracy Comparison:

- Theory for RBF-PUM interpolation in \mathbb{R}^d says same convergence orders should be expected as global RBFs (although constants involved are larger and depend strongly on the partitions).
- No theory on for \mathbb{S}^2 , but should expect similar results.

Remarks on RBF-PUM

- RBF-PUM interpolant has near-optimal computational scaling.
- Error estimates for the sphere still need to be worked out.
- Research problems:
 - Develop RBF-PUM for non-uniform nodes on the sphere.
 - Develop a multilevel (or multiscale) framework for fitting/filtering data using RBF-PUM.
 - Develop a PBF-PUM to solve PDEs, such as advection-reactiondiffusion on the sphere. Use collocation or Galerkin method.
 - Use RBF-PUM for geometric modeling (see problems 3 and 9).

Computing derivatives and solving PDEs with RBFs

(Surface) Div, Grad, Curl, and all that

	, craci, carr, and ar	Part 2
	Spherical Coords.	Cartesian Coords.
Point:	$(\lambda, heta, 1)$	(x,y,z)
Unit vectors:	$\hat{\mathbf{i}} = \text{longitudinal}$	$\hat{\mathbf{i}} = x$ -direction
	$\hat{\mathbf{j}} = $ latitudinal	$\hat{\mathbf{j}} = y$ -direction
	$\hat{\mathbf{k}} = \mathrm{radial}$	$\hat{\mathbf{k}} = z$ -direction
Unit tangent vectors:	î, ĵ	$oldsymbol{\zeta} = rac{1}{\sqrt{1-z^2}} egin{bmatrix} -y \ x \ 0 \end{bmatrix}, \ oldsymbol{\mu} = rac{1}{\sqrt{1-z^2}} egin{bmatrix} -zx \ -zy \ 1-z^2 \end{bmatrix}$
Unit normal vector:	ĥ	$\mathbf{x} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$
Gradient of scalar g :	$\mathbf{u}_s = abla_s \; g = rac{1}{\cos heta} rac{\partial g}{\partial \lambda} \mathbf{\hat{i}} + rac{\partial g}{\partial heta} \mathbf{\hat{j}}$	$\mathbf{u}_c = P(abla_c \ g) = P\left(rac{\partial g}{\partial x}\mathbf{\hat{i}} + rac{\partial g}{\partial y}\mathbf{\hat{j}} + rac{\partial g}{\partial z}\mathbf{\hat{k}} ight)$
Surface divergence of u :	$ abla_s \cdot \mathbf{u}_s = rac{1}{\cos heta} rac{\partial u_s}{\partial \lambda} + rac{\partial v_s}{\partial heta}$	$(abla_c) \cdot \mathbf{u}_c = abla_c \cdot \mathbf{u}_c - \mathbf{x} \cdot abla(\mathbf{u}_c \cdot \mathbf{x})$
Curl of a scalar f :	$\mathbf{u}_s = \hat{\mathbf{k}} imes (abla_s f) = -rac{\partial f}{\partial heta} \hat{\mathbf{i}} + rac{1}{\cos heta} rac{\partial f}{\partial \lambda} \hat{\mathbf{j}}$	$\mathbf{u}_c = \mathbf{x} imes (P abla_c f) = Q P(abla_c f) = Q(abla_c f)$
Surface curl of a vector u :	$\hat{f k} \cdot (abla_s imes f u_s) = - abla_s \cdot (\hat{f k} imes f u_s)$	$\mathbf{x} \cdot ((P abla_c) imes \mathbf{u}_c) = - abla_c \cdot (Q \mathbf{u}_c)$
Here: $P =$	$I - \mathbf{x}\mathbf{x}^T = egin{bmatrix} 1 - x^2 & -xy & -x \ -xy & 1 - y^2 & -y \ -xz & -yz & 1 - y^2 \end{bmatrix}$	$\begin{bmatrix} z \\ yz \\ z^2 \end{bmatrix} Q = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$

Ex: Transport equation on the sphere

- Transport equation for a scalar valued quantity h on the surface of the unit sphere in an incompressible velocity field \mathbf{u}_{c} .
- The governing PDE can be written in Cartesian coordinates as:

$$h_t + \mathbf{u}_c \cdot (P\nabla_c h) = 0$$

 $P \ projects$ arbitrary three-dimensional vectors onto a plane tangent to the unit sphere at \mathbf{x} .

• Surface gradient operator:

$$P\nabla_{c} = (\mathbf{I} - \mathbf{x}\mathbf{x}^{T})\nabla_{c} = \begin{bmatrix} (1 - x^{2}) & -xy & -xz \\ -xy & (1 - y^{2}) & -yz \\ -xz & -yz & (1 - z^{2}) \end{bmatrix} \begin{bmatrix} \partial_{x} \\ \partial_{y} \\ \partial_{z} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{x} \cdot \nabla \\ \mathbf{p}_{y} \cdot \nabla \\ \mathbf{p}_{z} \cdot \nabla \end{bmatrix}$$

No coordinate singularities!

Ex: shallow water equations on a rotating sphere

• Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous, and inviscid fluid layer.

 $Part\ 2$

• Idealized test-bed for horizontal dynamics of all 3-D global climate models.

Equations	Momentum	Transport
Spherical coordinates	$\frac{\partial \mathbf{u}_s}{\partial t} + \mathbf{u}_s \cdot \nabla_s \mathbf{u}_s + f \hat{\mathbf{k}} \times \mathbf{u}_s + g \nabla_s h = 0$	$\frac{\partial h^*}{\partial t} + \nabla_s \cdot (h^* \mathbf{u}_s) = 0$
	Singu	larity at poles!
Cartesian coordinates	$\frac{\partial \mathbf{u}_c}{\partial t} + P \begin{bmatrix} (\mathbf{u}_c \cdot P \nabla_c) u_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{i}} + g(\mathbf{x} - \mathbf{u}_c) \cdot \hat{\mathbf{j}} + g(\mathbf{u} - \mathbf{u}_c) \cdot \hat{\mathbf{j}}$	$ \begin{bmatrix} P\hat{\mathbf{i}} \cdot \nabla_c h \\ P\hat{\mathbf{j}} \cdot \nabla_c h \\ P\hat{\mathbf{k}} \cdot \nabla_c h \end{bmatrix} = 0 \frac{\partial h^*}{\partial t} + (P\nabla_c) \cdot (h^* \mathbf{u}_c) = 0 $
	Smooth	over entire sphere!

Ex: Diffusion equation on the sphere

- Diffusion of a scalar valued quantity u on the surface of the unit sphere
- The governing PDE can be written in Cartesian coordinates as:

$$u_t = \Delta_s u + f(t, u)$$

= $(\Delta_c - \mathbf{x}^T (2 + \mathbf{x}^T \nabla_c) \nabla_c) u + f(t, u)$

No coordinate singularities!

Approximating the surface gradient

• We will illustrate how to approximate the surface gradient operator using RBFs:

$$\mathbf{P}\nabla = (\mathbf{I} - \mathbf{x}\mathbf{x}^T)\nabla = \begin{bmatrix} (1 - x^2) & -xy & -xz \\ -xy & (1 - y^2) & -yz \\ -xz & -yz & (1 - z^2) \end{bmatrix} \begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix} = \begin{bmatrix} \mathbf{p}_x \cdot \nabla \\ \mathbf{p}_y \cdot \nabla \\ \mathbf{p}_z \cdot \nabla \end{bmatrix}$$

 ${\bf P}$ projects arbitrary three-dimensional vectors onto a plane tangent to the unit sphere at ${\bf x}.$

• Goal: Construct good numerical approximations to

$$\mathcal{D}_x = \mathbf{p}_x \cdot \nabla, \ \mathcal{D}_y = \mathbf{p}_y \cdot \nabla, \ \mathcal{D}_z = \mathbf{p}_z \cdot \nabla$$

- 1) Global RBF method
- 2) Local RBF method: RBF-generated finite differences
- See problems 4-6 for more details on the global method.

Surface gradient approximation: Global RBF method $_{Part 2}$

- Setup: $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$ and $f\Big|_X$ samples of a target function.
- ϕ is some differentiable PD or CPD(1) kernel on \mathbb{R}^3 .
- RBF interpolant of $f|_X$ is given by

$$s(\mathbf{x}) = \sum_{j=1}^{N} c_j \phi(\|\mathbf{x} - \mathbf{x}_j\|)$$

• The coefficients c_j are determined from:

$$\underbrace{\begin{bmatrix} \phi(\|\mathbf{x}_{1} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{1} - \mathbf{x}_{N}\|) \\ \phi(\|\mathbf{x}_{2} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{2} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{2} - \mathbf{x}_{N}\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\|\mathbf{x}_{N} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{N} - \mathbf{x}_{2}\|) \cdots \phi(\|\mathbf{x}_{N} - \mathbf{x}_{N}\|) \end{bmatrix}} \underbrace{\begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{N} \end{bmatrix}}_{\underline{C}} = \underbrace{\begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{N} \end{bmatrix}}_{\underline{f}}$$

• Discretization of the projected gradient closely follows Flyer & W (2007,2009).

Surface gradient approximation: Global RBF method $_{Part 2}$

• Approximate the *x*-component of the surface gradient using collocation:

$$\mathbf{p}_{x} \cdot \nabla s(\mathbf{x}) \left| \left| \mathbf{x} = \mathbf{x}_{j} \right|_{\mathbf{x} = \mathbf{x}_{j}} = \sum_{k=1}^{N} c_{k} \left[\mathbf{p}_{x} \cdot \nabla \phi_{k} (\|\mathbf{x} - \mathbf{x}_{k}\|) \right] \right|_{\mathbf{x} = \mathbf{x}_{j}}, \quad j = 1, \dots, N$$

$$= \sum_{k=1}^{N} c_{k} \left[x_{j} \mathbf{x}_{j}^{T} \mathbf{x}_{k} - x_{k} \right] \left(\frac{\phi_{k}^{'}(\|\mathbf{x} - \mathbf{x}_{k}\|)}{\|\mathbf{x} - \mathbf{x}_{k}\|} \right) \right|_{\mathbf{x}_{j}}, \quad j = 1, \dots, N$$

$$= B^{x} \underline{c}$$

$$= \left(B^{x} A^{-1} \right) \underline{f}$$

$$= D_{N}^{x} \underline{f}$$

- D_N^x is an N-by-N differentiation matrix (DM).
- It represents the discrete RBF approximation to $\mathbf{p}_x \cdot \nabla$ at nodes X.
- DMs D_N^y and D_N^z can similarly be constructed for $(\mathbf{p}_y \cdot \nabla)$ and $(\mathbf{p}_z \cdot \nabla)$.

Global RBF collocation for transport equation

• Transport equation in Cartesian coordinates

$$h_t + \mathbf{u} \cdot (P\nabla h) = 0$$

- Let h and $\mathbf{u} = (u, v, w)$ be sampled at X.
- Semi-discrete formulation (method-of-lines) of transport equation (see Problem 5):

$$\underline{h}_t = -\left(\operatorname{diag}(\underline{u})D_N^x + \operatorname{diag}(\underline{v})D_N^y + \operatorname{diag}(\underline{w})D_N^z\right)\underline{h} = -D_N\underline{h}.$$

- Advance the system in time using some standard ODE solver.
- This is a purely hyperbolic problem and temporal stability can be an issue.
 - We stabilize the method by including some high-order diffusion operator L_N (hyperviscosity):

$$\underline{h}_t = -D_N \underline{h} + \mu L_N \underline{h}$$

- L_N is a discrete approximation to a high power of the Laplacian: Δ^{2k} .

• Solid body rotation of a non-smooth cosine bell (Williamson et. al. JCP (1992))

Stream Function for flow

$$\psi(\mathbf{x}) = \cos(\alpha)z + \sin(\alpha)y \qquad \alpha = \pi/2$$
 (flow over the poles)

Initial condition (non-smooth: jump in second derivative)

$$h(\mathbf{x}) = \begin{cases} \frac{1}{2} \left(1 + \cos(3\pi r(\mathbf{x})) \right) & r(\mathbf{x}) < 1/3 \\ 0 & r(\mathbf{x}) \ge 1/3 \end{cases} \quad r(\mathbf{x}) = \arccos(x)$$

Details:

- Gaussian RBF
- $\Delta t = 30$ minutes

- No stabilization required.
- Minimum energy node sets used.

- Convergence results as number of nodes N increases (Flyer & W, 2007)
- Error results are for one complete revolution of the cosine bell.

log-log scale

Straight line indicates <u>algebraic accuracy</u>

Straight line indicates **spectral accuracy**

• Comparison to other high order methods (Flyer & W, 2007)

Method	Cost per	ℓ_2 error	Time-step	Number of	Code length	Local mesh
	time-step			grid points	(# of lines)	refinement
RBF	$O(N^2)$	0.006	1/2 hour	4096	< 40	yes
SH	$O(M^{3/2})$	0.005	90 seconds	32768	> 500	no
DF	$O(N \log N)$	0.005	90 seconds	32768	> 100	no
DG	$O(kN_e)$	0.005	6 minutes	7776	> 1000	yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier, DG=discontinuous Galerkin spectral elements

Comments:

- For RBF and DF N = the number of grid points.
- For SH $M = \text{total number of spherical harmonics: } (85+1)^2 = 7396.$
- For DG $N_e = \text{total number of nodes per element, and } k=\text{number of elements.}$

• Comparison to other high order methods (Flyer & W, 2007)

Method	Cost per	le orror	Time-step	Number of	Code length	Local mesh
Method	time-step	22 01101		grid points	(# of lines)	refinement
RBF	$O(N^2)$	0.006	1/2 hour	4096	< 40	yes
SH	$O(M^{3/2})$	0.005	90 seconds	32768	> 500	no
DF	$O(N \log N)$	0.005	90 seconds	32768	> 100	no
DG	$O(kN_e)$	0.005	6 minutes	7776	> 1000	yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier, DG=discontinuous Galerkin spectral elements

Comments:

- For RBF and DF N = the number of grid points.
- For SH $M = \text{total number of spherical harmonics: } (85+1)^2 = 7396.$
- For DG $N_e = \text{total number of nodes per element, and } k=\text{number of elements.}$

• Comparison to other high order methods (Flyer & W, 2007)

Method	Cost per	ℓ_2 error	Time-step	Number of	Code length	Local mesh
	time-step			grid points	(# of lines)	refinement
RBF	$O(N^2)$	0.006	1/2 hour	4096	< 40	yes
SH	$O(M^{3/2})$	0.005	90 seconds	32768	> 500	no
DF	$O(N \log N)$	0.005	90 seconds	32768	> 100	no
DG	$O(kN_e)$	0.005	6 minutes	7776	> 1000	yes

RBF=radial basis functions, SH=spherical harmonics, DF=double Fourier, DG=discontinuous Galerkin spectral elements

- Need ways to reduce this cost.
- Next method we discuss is focused on this.

RBF generated finite differences (RBF-FD)

• Consider $X = {\mathbf{x}_j}_{j=1}^N \subset \mathbb{S}^2$, where $\mathbf{x}_j = (x_j, y_j, z_j)$:

- Generalization of finite-difference (FD) method to scattered nodes using RBFs to compute the FD weights.
- References:
 - \circ W & Fornberg (2006)
 - o Fornberg & Lehto (2011)
 - Flyer, Lehto, Blaise, W & St-Cyr (2012)
 - $\circ~$ Bollig, Flyer & Erlebacher (2012)

- 1. For each node \mathbf{x}_j , choose n-1 of it's nearest neighbors: $X_j = \{\mathbf{x}_i\}_{i=1}^n$, with $\mathbf{x}_1 = \mathbf{x}_j$.
- 2. Approximate $\mathbf{p}_x \cdot \nabla f \big|_{\mathbf{x}_j}$ using linear a combination of the values of f sampled at X_j :

$$\mathbf{p}_x \cdot \nabla f \bigg|_{\mathbf{x}_j} = \sum_{i=1}^n c_i f(\mathbf{x}_i)$$

3. Choose the weights c_i such the approximation is exact for $\{\phi(\|\mathbf{x}_1 - \mathbf{x}_k\|)\}_{k=1}^n$:

$$\underbrace{\left[\mathbf{p}_{x}\cdot\nabla\phi(\|\mathbf{x}-\mathbf{x}_{k}\|)\right]}_{\mathcal{D}_{x}} \equiv \sum_{i=1}^{n}c_{i}\phi(\|\mathbf{x}_{i}-\mathbf{x}_{k}\|), \ k=1,\ldots,n$$

Similar to standard FD formulas that use polynomials.

3. The weights $\{c_i\}_{i=1}^n$ can be computed by solving:

$$\begin{bmatrix} \phi(\|\mathbf{x}_{1} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|) \cdots & \phi(\|\mathbf{x}_{1} - \mathbf{x}_{n}\|) \\ \phi(\|\mathbf{x}_{2} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{2} - \mathbf{x}_{2}\|) \cdots & \phi(\|\mathbf{x}_{2} - \mathbf{x}_{n}\|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\|\mathbf{x}_{n} - \mathbf{x}_{1}\|) & \phi(\|\mathbf{x}_{n} - \mathbf{x}_{2}\|) \cdots & \phi(\|\mathbf{x}_{n} - \mathbf{x}_{n}\|) \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix} = \begin{bmatrix} \mathcal{D}_{x}\phi(\|\mathbf{x}_{1} - \mathbf{x}_{1}\|) \\ \mathcal{D}_{x}\phi(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|) \\ \vdots \\ \mathcal{D}_{x}\phi(\|\mathbf{x}_{1} - \mathbf{x}_{n}\|) \end{bmatrix}$$

4. Combine all the weights into a differentiation matrix.

• Example differentiation matrix (DM) for N=16384, n=101:

• Compare to the global RBF method, which results in a dense differentiation matrix.

RBF-FD method for transport equation

• Transport equation in Cartesian coordinates

$$h_t + \mathbf{u} \cdot (P\nabla h) = 0$$

- Let h and $\mathbf{u} = (u, v, w)$ be sampled at X.
- Semi-discrete formulation (method-of-lines) of transport equation (see Problem 5):

$$\underline{h}_t = -\left(\operatorname{diag}(\underline{u})D_N^x + \operatorname{diag}(\underline{v})D_N^y + \operatorname{diag}(\underline{w})D_N^z\right)\underline{h} = -D_N\underline{h}.$$

- Advance the system in time using some standard ODE solver.
- This is a purely hyperbolic problem and temporal stability can be an issue.
 - We stabilize the method by including some high-order diffusion operator L_N (hyperviscosity):

$$\underline{h}_t = -D_N \underline{h} + \mu L_N \underline{h}$$

- L_N is a discrete approximation to a high power of the Laplacian: Δ^{2k} .

• Solid body rotation of a non-smooth cosine bell (Williamson et. al. JCP (1992))

Stream Function for flow

$$\psi(\mathbf{x}) = \cos(\alpha)z + \sin(\alpha)y \qquad \alpha = \pi/2$$
 (flow over the poles)

Initial condition (non-smooth: jump in second derivative)

$$h(\mathbf{x}) = \begin{cases} \frac{1}{2} \left(1 + \cos(3\pi r(\mathbf{x})) \right) & r(\mathbf{x}) < 1/3 \\ 0 & r(\mathbf{x}) \ge 1/3 \end{cases} \quad r(\mathbf{x}) = \arccos(x)$$

Details:

• Gaussian RBF

- Stabilization required.
- Minimum energy node sets used.

- Convergence results as number of nodes N increases (Fornberg & Lehto, 2011)
- Error results are for 10 complete revolution of the cosine bell.

- Errors compare favorably with the global RBF method.
- RBF-FD method much more computationally efficient than global method.

RBF-FD for shallow water wave eqs.

- Numerical simulation: Flow over an isolated mountain (Test Case 5 from Williamson *et. al.*, JCP (1992))
- See Flyer *et. al.*, JCP (2012)

Time = 0.000 days

Remarks regarding solving PDEs

- The Global RBF collocation method is competitive in terms of accuracy per degree of freedom.
- It are not competitive in terms of computational complexity.
- The RBF generated finite difference (RBF-FD) method shows great promise in terms of accuracy and computational cost.
 - Comparisons with other state-of-the art methods have been done (Flyer *et. al.* 2012) and show the RBF-FD is competitive in terms of accuracy and computational complexity.
 - Parallelization on multi-GPU has already been implemented (Bollig, Flyer, & Erlebacher, 2012).
- Research Ideas for RBF-FD method
 - Extend method to advection-reaction-diffusion on the sphere.
 - Extend method to non-uniform nodes (static/adaptive refinement)
 - Extend method to more general surfaces
 - Develop method for the hemisphere.
 - Develop method for 3D spherical shell
 - Incorporate into immersed boundary type setting for 2D or 3D problems.
 - Couple surface PDEs to PDEs in the bulk medium.