
Montestigliano Problem 4 Level 1
Workshop Differentiation matrices Grady Wright

A natural thing to do with an interpolant of samples of a function is to differentiate it to approximate
derivatives of the underlying function. This procedure is the central idea behind spectral and pseudospectral
collocation methods (see, for example, [3, 4]). In these methods it is convenient to form differentiation
matrices for a node set X = {xj}Nj=1 that can be applied directly to a vector of samples of a function f at
X to give an approximation to some derivative at X. In this problem, you will construct differentiation
matrices from RBF interpolants on the unit sphere for the surface gradient and the surface Laplacian
(Laplace-Beltrami operator) following the procedure outlined in the lecture slides. Further background
material can be found in [1, 2, 5], where the ideas were first proposed and used in applications.

While it is possible to work in spherical coordinates for constructing the differentiation matrices using
RBFs and avoid the “pole problem” (see [1]), you will be working in Cartesian coordinates since it will
be useful for applications later. As discussed in the lecture slides, the surface gradient ∇S on the sphere
can be expressed in Cartesian coordinates using the projection matrix P = (I − xxT ) and the standard
gradient in R3, ∇ = [∂x ∂y ∂z]T , as follows:

∇S := P∇ = (I− xxT )∇ =

[
(1− x2) −xy −xz
−xy (1− y2) −yz
−xz −yz (1− z2)

][
∂x
∂y
∂z

]
=

[
px · ∇
py · ∇
pz · ∇

]
. (1)

The surface Laplacian ∆S on the sphere can also be expressed in Cartesian coordinates from the relationship
that it is simply the divergence of the gradient:

∆S := ∇S · ∇S = (P∇) · (P∇),

Plugging in P and simplifying gives the expression

∆S := ∆− xT (2 + xT∇)∇, (2)

where ∆ = ∂xx + ∂yy + ∂zz is the standard Laplacian in R3. When the surface Laplacian is applied to a
radial kernel φ the resulting expression can be simplified so that it is expressed entirely in terms of distance
as shown in [5]. Letting x,xj ∈ S2, φ a C2 radial kernel, and rk(x) = ‖x− xk‖, we can write

∆Sφ(rk(x)) = rk(x)2
(

1− rk(x)2

4

)
ψ(rk(x)) + (2− rk(x)2)χ(rk(x)), (3)

where

χ(rk(x)) =
1

rk(x)
φ′(rk(x)), (4)

ψ(rk(x)) =
1

rk(x)
χ′(rk(x)). (5)

We note that the surface gradient of φ(rk(x)) can also be written in terms of the derivative term χ(rk(x));
for example,

px · ∇φ(rk(x)) =
[
xj x

T
j xk − xk

]
χ(rk(x)). (6)
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Doing the division by rk(x) analytically in the derivative terms (4) and (5) is preferable to handle the

case when rk(x) = 0, which happens when x = xk. This is not a problem since the kernel is radial and

assumed to be twice continuously differentiable, so that the rk(x) term in the denominator will cancel.

4.a) Write a Matlab function for computing differentiation matrices for the three components of the
surface gradient listed in (1). In the lecture slides the construction of the differentiation matrices for
the x-component of the surface gradient px ·∇ is given, which can be simplified using (6) above. The
the construction for the remaining components should follow immediately from this. Your function
should take as input a set of nodes X = {x}Nj=1 ⊂ S2 and a function handle for the radial kernel φ
and function handle for the related derivative term χ given in (4). Try to vectorize the code so that
at most only one loop is used. Use Gaussian elimination (the mrdivide or “forward slash” function
in Matlab ) to compute BA−1. In the case where the interpolation matrix is positive definite (i.e.
φ is a positive definite kernel) you may consider instead using Cholesky factorization. The output
of your code should be 3 N -by-N differentiation matrices Dx, Dy, and Dz for the three respective
components of the surface gradient (1). For an N -by-1 vector f containing samples of a function f
at the nodes in X, computing the product Dx*f in Matlab should give an approximation to px ·∇f
at X.

(i) Test your code on the smooth function

f(x) = f(x, y, z) = cos(3x2 + 5y2 + 8(z − 1)2),

for which the surface gradient is

∇Sf(x) =

[
2x(3x2 + 5y2 + 8z(z − 1)− 3)
2y(3x2 + 5y2 + 8z(z − 1)− 5)

2(z(3x2 + 5y2) + 8(z − 1)2(z + 1))

]
sin(3x2 + 5y2 + 8(z − 1)2).

Use both the IMQ and GA kernels in your tests and try some different values for the shape
parameter ε, values of N , and different node sets to see how the errors behave.

4.b) Write a Matlab function for also computing a differentiation matrix for the surface Laplacian. The
construction of this matrix should be similar to that described for px · ∇ in the lecture slides, but
the entries of the B matrix in this formula should be replaced by (3) evaluated at xj . Your function
should take as input a set of nodes X = {x}Nj=1 ⊂ S2 and function handles for the radial kernel
φ, and the related derivative terms χ and ψ in (4) and (5). As with 4.a), avoid loops and use
Gaussian elimination. The output of your code should be an N -by-N differentiation matrices L for
the surface Laplacian (2). For an N -by-1 vector f containing samples of a function f at the nodes in
X, computing the product L*f in Matlab should give an approximation to ∆Sf at X.

(i) Test your code on various spherical harmonics Y m
` (x), which, of course, have the property that

∆SY
m
` (x) = −`(`+ 1)Y m

` (x). The function sphHarm in the rbfsphere package can be used to
compute spherical harmonics; see help sphHarm for instructions on using this file. As with 4.a)
(i), use both the IMQ and GA kernels in your tests and try some different values for the shape
parameter ε, values of N , and different node sets to see how the errors behave.
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