
Montestigliano Problem 6 Level 1 & 2
Workshop Surface diffusion and reaction-diffusion equations Grady Wright

In Problem 4 you computed differentiation matrices for the surface Laplacian on the sphere. In this
problem you will look at how to use these matrices for some problems involving diffusion and reaction-
diffusion on the sphere. The application of RBFs to these types of problems outlined below follows closely
the method of Fuselier and Wright [6] (although that method applies to more general surfaces than the
sphere).

The diffusion of a scalar valued quantity on the surface of the sphere is given by

∂u

∂t
=δ∆Su+ f(t, u), (1)

where u : S2 −→ R, δ > 0, ∆S is the surface Laplacian (or Laplace-Beltrami operator for the sphere), and
f is some forcing function. Similar to the transport equation from Problem 5, we can numerically solve
this equation using a method-of-lines (MOL) approach involving the differentiation matrix for the surface
Laplacian from problem 4.

Following the notation of Problem 5, let X = {xj}Nj=1 ⊂ S2 and denote the vector containing samples
of u at X as u, and the differentiation matrix for the surface Laplacian associated with X as LN . Then,
the MOL formulation of (1) is

ut = LNu+ f(t, u) (2)

Given an initial value for u, this system of ODEs can be numerically solved using any number of numer-
ical methods.1 For example, one could use the third-order semi-implicit backward differentiation scheme
(SBDF3) [1]:
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, (3)

for k = 2, 3, . . .. Here ∆t is the time-step, u0 contains the initial condition sampled at X, u1 is the solution
(or an approximation) at t = ∆t, and uk is the numerical solution to (2) at k∆t. This scheme treats
the diffusion term implicitly and the (possibly non-linear) forcing term f explicitly, which allows larger
time-steps to be taken in the case f is not stiff. This is the numerical scheme suggested for the different
problems below, but you may use a different one if you choose.

Another type of process that appears in a number of applications arising in biology, chemistry, and
computer graphics is the reaction-diffusion of two species on the sphere. The prototypical form of the
system of PDEs describing this process is

∂u

∂t
=δu∆Su+ fu(t, u, v),

∂v

∂t
=δv∆Sv + fv(t, u, v),

(4)

where u, v : S2 −→ R, δu, δv ≥ 0, and fu, fv are (possibly non-linear) scalar functions. Using the notation
above, the MOL formulation of this system is

ut =δuLNu+ fu(t, u, v),

vt =δvLNv + fv(t, u, v),
(5)

1Unlike the transport the problem, the differentiation matrix LN for the surface Laplacian is guaranteed to have real,
non-positive eigenvalues [7], so that no stabilization term will be necessary.
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As with (2), the SBDF3 method above can be applied to discretize this system of ODEs in time.

5.a) Level 1: Diffusion. Implement a code in Matlab following the procedure (2) for numerically solving
the diffusion equation (1).

(i) Test your code for the case with no forcing (f = 0), δ = 1, and the initial condition is given by

u(0,x) = Y 0
6 (x) +

√
14

11
Y 5
6 (x) + Y 5

20(x)

Since the initial condition is a finite combination of spherical harmonics, the exact solution is
simply

u(t,x) = e−t(6)(7)

[
Y 0
6 (x) +

√
14

11
Y 5
6 (x)

]
+ e−t(20)(21)Y 5

20(x).

Compute the numerical solution up to t = 0.05 for the IMQ kernel using N = 1849 MD nodes,
ε = 1.75, and a time-step of ∆t = 0.001 (chosen for accuracy, not stability). Plot the numerical
solution every time-step using your functions from problem 1. You should see a clear recognizable
pattern emerge after a few time-steps. Compute the `2 and `∞ norm of the difference between
the numerical and exact solution at the nodes X.

(ii) Experiment with different N , node sets, time-steps, and kernels to get a feel for how the method
performs.

5.b) Level 2: Turing patterns. Since Turing’s classical paper [8] that suggested how certain non-linear
models of reaction and diffusion can lead to stable, heterogeneous pattern formations, there has been
an explosion of research in reaction-diffusion-type models for various kinds of morphogenesis. In this
problem you will implement a code for solving the Turing system (a linearized Brusselator model) on
the sphere from [9]:

∂u

∂t
=δu∆Su+ αu(1− τ1v2) + v(1− τ2u)︸ ︷︷ ︸

fu(u, v)

,

∂v

∂t
=δv∆Sv + βv

(
1 +

ατ1
β
uv

)
+ u(γ + τ2v)︸ ︷︷ ︸

fv(u, v)

.
(6)

Here u and v are morphogens with u the “activator” and v is the “inhibitor”. If α = −γ then
(u, v) = (0, 0) is a unique equilibrium point of this system. By changing the diffusivity rates of u and
v an instability can form that leads to different pattern formations. The cubic coupling parameter
τ1 favors the formation of stripes, while the quadratic coupling parameter τ2 favors the formation
spots [9]. The spot pattern formations are more robust than stripes and take far less time to reach
“steady-state”. The following are parameter values that lead to spots or stripes on the sphere [9] :

Pattern δv α β γ τ1 τ2
Spots 4.5 · 10−3 0.899 -0.91 -0.899 0.02 0.2

Stripes 2.1 · 10−3 0.899 -0.91 -0.899 3.5 0

For the initial conditions, set the values of u and v to random values between −0.5 and 0.5 in a strip
around the equator of the sphere (say for |z| < 0.3) and u = v = 0 elsewhere.

5.a) Compute the solution to (6) using parameters corresponding to spots. Try N = 1849 MD points,
the IMQ kernel with ε = 1.75, and ∆t = 0.05. Run the simulation until a quasi-steady-state is
reached. This should be around t = 500. Plot the solution of the u variable on the sphere at
t = 500 (or better yet, make a movie of the simulation!).
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5.b) Repeat (i), but for the parameters corresponding to spots. As mentioned above, stripes are not
as robust and take longer to develop and settle into a steady pattern. You may need to run
the simulation up to about t = 3000. Plot the solution on the sphere at this final time. The
image you get should be strikingly similar to the image on the cover of the SIAM Review Vol.
50, Issue 4. Indeed, that image was made from a simulation of the same Turing model (6) by
Calhoun et. al. [4, 5].

5.c) Level 2: Spiral waves. Spiral waves can be observed in many excitable chemical, biological, and
physical media. Important examples include Belousov-Zhabotinsky (BZ) chemical reactions and
electrical activity in the membranes of organisms. While numerical methods have been developed
for these models in planar domains (see [2, 3] and the corresponding software EZ-Spiral), there has
been growing interest in studying these models on non-planar surfaces, such as the sphere, since most
physically relevant problems occur on curved surfaces. In this problem you will implement a code
for solving, on the surface of the sphere, the following simplified model for spiral waves developed by
Barkely [2] that captures the dynamics of many excitable media:

∂u

∂t
=δu∆Su+

1

α
u (1− u)

(
u− v + b

a

)
︸ ︷︷ ︸

fu(u, v)

,

∂v

∂t
=δv∆Sv + u− v︸ ︷︷ ︸

fv(u, v)

,

(7)

where u and v can be viewed as some chemical concentrations or as membrane potential and current.
The parameters a, b, and α govern the reaction kinetics and δu and δv are the diffusivities of the u
and v species respectively. The parameter α is chosen as α << 1 so that the u field takes on the
values u = 0 or u = 1 almost everywhere, with a thin interface (or reaction zone) separating these
two regions.

Solve the system (7) using the initial conditions

u(0,x) =
1

2
[1 + tanh(2x+ y)] ,

v(0,x) =
1

2
[1− tanh(3z)] ,

where x = (x, y, z) is a point on the unit sphere. and the following values for the parameters:
a = 0.75, b = 0.02, α = 0.02, δv = 0, and δu = 1.5(2π/50)2 (these choices are motivated by the values
found in [3] for a simulation on 2-D planar domain). Try N = 1849 MD points, the IMQ kernel
with ε = 1.75, and ∆t = 0.02. Plot the solution every 10 time-steps to see visualize the wave that
develops.
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