
Montestigliano Problem 7 Level 1 & 2
Workshop Quadrature on the Sphere Grady Wright

Problems 4–6 have dealt with approximating surface derivatives of a function from “scattered” sam-
ples. This problem deals with the related topic of approximating the surface integral of a function from
“scattered” samples (refer to [1] for more details). The goal is to compute a set of quadrature (or cubature)
weights {wj}Nj=1 for a set of nodes X = {xj}Nj=1 ⊂ S2 such that for f : S2 −→ R

∫
S2
f(x)dµ(x) ≈

N∑
j=1

wjf(xj), (1)

where dµ(x) is the measure for S2. As discussed in the lecture slides, one solution is to compute these
weights from an RBF interpolant of f sampled at X. In the case that one uses a basic RBF interpolant
with radial kernel φ for this problem, then it is explained in the lecture slides that the weights can be
computed from solving the linear system: φ(‖xi − xj‖)


︸ ︷︷ ︸

A

w1

...
wN


︸ ︷︷ ︸
w

=

ρ0...
ρ0


︸ ︷︷ ︸
ρ01

, (2)

where ρ0 is the surface integral of the radial kernel φ shifted at any point on the sphere, e.g. ρ0 =∫
S2 φ(‖xi − x1‖)dµ(x). This is a pretty neat results since it says the quadrature weights are just the

coefficients of the RBF interpolant to the constant function scaled by ρ0, which only requires solving
one linear system. Note that the resulting weights give the exact answer to (1) when f is in the finite-
dimensional space

V = span {φ(‖x− x1‖), φ(‖x− x2‖), . . . , φ(‖x− xN‖)} , x ∈ S2.

This is in contrast to quadrature weights that are typically derived by making them exact for the finite-
dimensional space consisting of all spherical harmonics up to a certain degree related to N . Numerical
results for quadrature weights given by (2) and values of ρ0 for different kernels can be found in the technical
report [2].

In this problem we consider computing quadrature weights using the general form of the RBF inter-
polant from problem 1:

s(x) =

N∑
j=1

cjφ(‖x− xj‖) +

k2∑
`=1

d`p`(x), (3)

where s(xi) = fi, i = 1, . . . , N and

N∑
j=1

cjp`(xj) = 0, ` = 1, . . . , k2. Here, p`(x), ` = 1, . . . , k2 will be

assumed to correspond to the standard spherical harmonics, i.e.

p1(x) = Y 0
0 (x), p2(x) = Y −11 (x), p3(x) = Y 0

1 (x), p4(x) = Y 1
1 (x), . . .
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Note that the sphHarm function in the rbfsphere package can be used to compute spherical harmonics of
a given degree and order. As discussed in the introductory lecture slides, the interpolation coefficients can
be determined from the linear system [

A P
PT 0

] [
c
d

]
=

[
f
0

]
(4)

where A is given in (2) above, P is the N -by-k2 matrix with Pj,` = p`(xj), and 0 is the zero vector of
size k2. Here we assume that P has full-column rank so that a unique solution to (4) is guaranteed. A
delightful result from using this interpolant is that for any k ≥ 1 the quadrature weights can be computed
without needing to know ρ0, the surface integral or φ. In the case that k = 1, this can be shown rather
straightforwardly (try it!), but for k > 1 the argument is a little more subtle (see [1]).

Following a similar procedure to how (2) is derived in the lecture slides, but with a little more effort,
the following system of equations can be derived for computing the quadrature weights associated with the
interpolant (3): [

A P
PT 0

] [
w
d

]
=

[
ρ01
ρ

]
, (5)

where 1 is the vector of all ones of length N , and ρ is a vector of length k2 with entry ρ1 =
∫
S2 Y

0
0 (x)dµ(x)

and all other entries equal to zero. Note that Y 0
0 (x) is a constant so that ρ1 = 4πY 0

0 (ξ), for any ξ ∈ S2.
As mentioned above, the weights are independent of ρ0, so you can simply set it equal to 1 in (5).

7.a) Level 1. Write a function in Matlab for computing quadrature weights for a given set of nodes
X = {x}Nj=1 on the unit sphere sphere using (5). Implement the code so that it accepts as input
an array containing the nodes X, a value k ≥ 1 for the additional spherical harmonic terms, and
function handle for the radial kernel that should. Try to vectorize the code so that at no loops are
used. Use Gaussian elimination (the mldivide or “backslash” function in Matlab ) to solve the
linear system for the coefficient vector. Your function should return a vector containing the weights.
As in problem 1.c), if you don’t feel up to writing code for a general k, just implement the case of
k = 1 and k = 2 correctly.

(i) Test your code for the following target functions, given as anonymous function in Matlab :

f1 = @(x) 0.75*exp(-(9*x(:,1)-2).^2/4 - (9*x(:,2)-2).^2/4 - (9*x(:,3)-2).^2/4)...

+ 0.75*exp(-(9*x(:,1)+1).^2/49 - (9*x(:,2)+1)/10 - (9*x(:,3)+1)/10)...

+ 0.5*exp(-(9*x(:,1)-7).^2/4 - (9*x(:,2)-3).^2/4 - (9*x(:,3)-5).^2/4)...

- 0.2*exp(-(9*x(:,1)-4).^2 - (9*x(:,2)-7).^2 - (9*x(:,3)-5).^2);

f2 = @(x) (1 + sign(-9*x(:,1) - 9*x(:,2) + 9*x(:,3)))/9;

f1 is smooth and its surface integral is 6.6961822200736179523 . . . , while f2 is discontinuous
with a surface integral of 4π/9. Use the IMQ and Gaussian radial kernels and the thin plate
spline kernel all with k = 2 for your tests and use the N = 400 MD nodes.

(ii) Compute the errors in approximations of the integrals from part (a) for N = 102, 202, . . . , 602

MD nodes and plot the relative errors vs.
√
N to get a feeling for the convergence rates of the

approximations. Are there differences between in the convergence rates for the different target
functions? How about for the different kernels?

(iii) Repeat (ii) for the minimum energy (ME) nodes. How do these results compare to the MD
nodes?

(iv) Repeat (ii) for the Fibonacci nodes using N = 102 +1, 202 +1, . . . , 602 +1. How do these results
compare to the MD and ME nodes?

(v) Make a plot of the weights from (ii)–(iv) for some N and verify they are all positive. Make the
figure by plotting the nodes on the sphere and coloring each node with a color representative of
the value of weight for that node. The —scatter3— function might be useful here.
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7.b) Level 2. The system (5) does not quite have the same form as the one in (4) because of the non-zero
term ρ in the right hand side. So, the coefficients w and d cannot be interpreted as interpolation
coefficients for an interpolant of the form (3). Thus, if one has a “fast method” for computing
interpolants of the form (3) with the constraints in (4) (as we will develop in a later problem), the
code would not be immediately adaptable to solving the quadrature problem. However, it is possible
to adapt the quadrature weight system (5) to one that is immediately equivalent to the system for
interpolation (4) as shown in [1].

The idea is to express the weights as a combination of two orthogonal vectors

w = w‖ + w⊥, (6)

where w‖ is the orthogonal projection of w onto the range of P and w⊥ is in the left null-space of P ,

i.e. PTw⊥ = 0. The standard normal equations give w‖ as

w‖ = P (PTP )−1ρ. (7)

Once w‖ is known, (5) can be re-written in terms of w⊥ as follows:[
A P
PT 0

] [
w⊥
d

]
=

[
ρ01−Aw‖

0

]
. (8)

This system now mimics the system for interpolation in (3). As mentioned above, any non-zero value
of ρ0 can be used here since the weights do not depend on this value. Also, note that the proper way
to compute w‖ in (7) is through the QR decomposition or singular value decomposition (SVD), not
the normal equations.

(i) Write a function in Matlab similar to 7.a) for computing quadrature weights by means of
Equations (6)–(8). Use the QR decomposition to compute w‖. Test your function using the
suggested tests in 7.a) (i).
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