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Abstract

The current paper establishes the computational efficiency and accuracy of the RBF-
FD method for large-scale geoscience modeling with comparisons to state-of-the-art
methods as high-order discontinuous Galerkin and spherical harmonics, the latter
using expansions with close to 300,000 bases. The test cases are demanding fluid flow
problems on the sphere that exhibit numerical challenges, such as Gibbs phenomena,
sharp gradients, and complex vortical dynamics with rapid energy transfer from
large to small scales over short time periods. The computations were possible as
well as very competitive due to the implementation of hyperviscosity on large RBF
stencil sizes (corresponding roughly to 6th to 9th order methods) with up to O(105)
nodes on the sphere. The RBF-FD method scaled as O(N) per time step, where N
is the total number of nodes on the sphere. In the Appendix, guidelines are given
on how to chose parameters when using RBF-FD to solve hyperbolic PDEs.

Key words: Radial Basis Functions, RBF, Finite Differences, RBF-FD,
Hyperbolic PDEs, Spherical Geometry

Preprint submitted to Elsevier



1 Introduction

It has previously been shown that global radial basis functions (RBF) are
highly competitive with respect to other state-of-the-art numerical methods
in the arena of computational geoscience [15–18, 46]. However, they become
computationally expensive when scaled to very large numbers of nodes. RBF-
generated finite differences (RBF-FD) are conceptually similar to standard
finite differences (FD) except the differentiation weights enforce the repro-
duction of RBFs rather than polynomials through the local set of nodes being
considered. As in FD methods, this results in sparse matrices. However, unlike
FD methods, they have all the flexibility of global RBFs in terms of handling
irregular geometries and scattered node layouts. Thus, they hold the promise
of computational speed and scalability to massively parallel computer plat-
forms.

The earliest reference to RBF-FD methods seems to be a conference presen-
tation by Tolstykh in 2000 [41]. It was independently noted (in passing only)
in [13] that the convergence of RBF interpolants to polynomial form when
ε → 0 would suggest RBF-generated FD methods. Three independent but
simultaneous works from 2003 put RBF-FD methods ‘on the map’ [33,40,45].
Since then they have been applied to a modest number of scientific/engineering
problems such as [8–10, 32, 36] and have also been examined more conceptu-
ally in [2,11,12,45,47]. However, till now, the RBF-FD methods implemented
in these studies and others have been limited to stencils with under 20 scat-
tered nodes, corresponding to no more than a fourth-order method. Before
the use of hyperviscosity in [21], larger stencil sizes could not be considered.
As the stencil size increases, so does the scattering of eigenvalues of the oper-
ator matrices, resulting in loss of diagonal dominance and thus near-singular
systems for elliptic operators and eigenvalues in the complex right half plane
that would destabilize the time-stepping of hyperbolic systems.

The goal of this paper is to establish the capability and competitiveness of the
RBF-FD method for large-scale modeling with comparisons to state-of-the-
art methods and reference solutions used at National Center for Atmospheric
Research (NCAR) and the Deutscher Wetterdienst (DWD - The German Na-
tional Weather Service). This necessitates the use of large stencil sizes, up to
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101 scattered nodes, nodes sets on the sphere of O(105), and high-order hy-
perviscosity of orders up to ∆10. The shallow water wave equations (SWE) are
used as the test bed since they capture the basic horizontal dynamics of many
fluid flows. As a result, the paper is the first to test RBF-FD method for a
nonlinear system of purely hyperbolic equations on a sphere and compare their
performance to other high order methods on the sphere, such as discontinuous
Galerkin (DG) on a cubed-sphere, spherical harmonics (NCAR/DWD-SH),
and global RBFs. Evaluation of the method will be done in terms of conver-
gence, accuracy as a function of time, and time step stability. Also, in order to
assess how competitive RBF-FD are, we will perform time benchmarks against
a high order discontinuous Galerkin (DG) method that was very recently de-
veloped at NCAR [4]. Since the test cases are nonlinear and highly unsteady
(in one case analytically unstable), little rigorous mathematical analysis can
be done and we rely on heuristic arguments to understand the results.

The paper is organized as follows: Section 2 shows how to construct the needed
RBF-FD matrices; Section 3 gives the discrete representation of the SWE using
RBF-FD; Section 4 discusses node layouts, hyperviscosity, and how to choose
values of needed parameters in the method such as the RBF shape parameter
and the order of the hyperviscosity; Section 5 considers 3 numerical studies:
flow over an isolated mountain, Rossby-Haurwitz waves, and evolution of a
highly nonlinear wave with complex vortical dynamics; Section 6 benchmarks
the code in terms of wall-clock time and Section 7 gives the conclusions that
can be drawn from the paper.

2 Constructing RBF-FD differentiation matrices

As an example, let us consider the gradient on the surface of a unit sphere
in spherical coordinates (λ is longitude, θ is latitude as measured from the
equator), L = ∇s = 1

cos θ
∂
∂λ

λ̂ + ∂
∂θ

θ̂. Assume we want to approximate L at
some location xc, denoted by the square box on any of the spheres in Figure
1(a), by a linear combination of the function values, uk, at the neighboring
n node locations, xk. In other words

∑n
k=1 akuk = (Lu)|x=xc . The weights,

ak, are calculated by enforcing that this linear combination should be exact
for RBFs , φ(ε‖x − xk‖)n

k=1, centered at each of the node locations {xk}n
k=1

(classical FD would enforce that it be exact for polynomials instead). Here,
ε is a non-negative constant referred to as the shape parameter. It has also
been shown through experience and studies [19, 21, 47] that better accuracy
is gained by the interpolant being able to reproduce a constant. Hence, the
constraint

∑n
k=1 ak = L1|x=xc = 0 is added, where an+1 is ignored after the
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matrix is inverted. These constraints lead to the linear system of equations:




φ(ε‖x1 − x1‖) φ(ε‖x1 − x2‖) · · · φ(ε‖x1 − xn‖) 1
...

. . .
...

φ(ε‖xn − x1‖) φ(ε‖xn − x2‖) · · · φ(ε‖xn − xn‖) 1

1 1 · · · 1 0







a1

...

an

an+1




=




Lφ(ε‖x− x1‖)|x=xc

...

Lφ(ε‖x− xn‖)|x=xc

0




.

(1)

If we have a total of N nodes on the sphere, then there will be N n× n ma-
trices to invert resulting in a preprocessing cost of O(n3N). However, since
N >> n in high resolution computations, the cost to time step the RBF-FD
method is only O(N). Its sparsity structure is seen in Figure 1b. This results
in a significant speed-up from global RBFs that require O(N3) operations to
create the differentiation matrices (DMs) and O(N2) to time-step. However,
the method is no longer spectral and as a rough guide its order of convergence
on the sphere for smooth functions is

√
n, e.g. a 49 point stencil is roughly

a 6th order method. In our studies, N varies from 3600 to 163842 (from ap-
proximately 400km to 60km resolution, respectively) and n varies for 31 to
101 nodes.

(a)
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(b)

Fig. 1. (a) An example of four 75 node RBF-FD stencils for N = 900 nodes on
the sphere. Blue corresponds to negative differentiation weights for the convective
operator and red to positive. The marker sizes reflect the magnitude of the weights.
Green nodes are not included in the stencils. (b) Sparsity of the RBF-FD DM for
the convective operator on a sphere using a 31 node stencil, the most commonly
used in the paper, and N = 25, 600. A kd-tree algorithm was used to order the
nodes.
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3 Representation of the shallow water equations

3.1 Continuous formulation

In Flyer and Wright [18], the shallow water equations on a sphere were imple-
mented in Cartesian coordinates as follows

∂u

∂t
= −px ·




(u ·P∇)u + f(x× u) · î + g(px · ∇)h

(u ·P∇)v + f(x× u) · ĵ + g(py · ∇)h

(u ·P∇)w + f(x× u) · k̂ + g(pz · ∇)h




︸ ︷︷ ︸
RHS

, (2)

∂v

∂t
= −py · RHS,

∂w

∂t
= −pz · RHS,

∂h

∂t
= −(P∇) · (hu). (3)

Here, u = (u, v, w) is the wind field in directions x = (x, y, z), respectively, f is
the Coriolis force, g is gravity and h is the geopotential height. The projection
operator P confines the flow to the sphere and is defined as

P = I− xxT =




(1− x2) −xy −xz

−xy (1− y2) −yz

−xz −yz (1− z2)




=




pT
x

pT
y

pT
z




, (4)

where px represents the projection operator in the x direction and so on. Thus,
the only spatial operator that needs to be discretized is the projected gradient,
P∇ and its components, px · ∇,py · ∇,pz · ∇.

3.2 RBF-FD discrete formulation

Let φk(r(x) =
√

2(1− xTxk)) be any RBF centered at {xk}n
k=1, n being the

number of nodes in an RBF-FD stencil. It was shown in [18] that the projected
RBF gradient operator is represented as

P∇φk(r(x)) =




xxTxk − xk

y xTxk − yk

z xTxk − zk




φ
′
k(r(x))

r(x)
(5)

where ′ denotes differentiation with respect to r.
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Next, we assume the function f(x) is known at all the N node locations,
{xj}N

j=1, on the unit sphere. The RBF-FD stencil is a subset of those nodes
of size n. As an example, let us consider px · ∇f(x) at a given node xc. We
represent f(x) as a RBF expansion of size n and apply the operator px · ∇

[px · ∇f(x)] |x=xc
=

n∑

k=1

ck

[
xc x

T
c xk − xk

] φ
′
k(r(xc))

r(xc)︸ ︷︷ ︸
bx
c,k

= bxc =
(
bxA−1

)
f = dx

nf,

where A−1 is the inverse of the matrix defined in (1) and dx
n are the RBF

weights that will form one row of the DM, for this operator. The process is
then repeated N times, via a ‘for’ loop, to form the full DM, denoted by Dx

N .
For each pass through the ‘for’ loop, the n nearest neighbors to xc need to be
located. This can be done efficiently using a kd-tree algorithm [3], leading to
the matrix structure seen in Figure 1(b). Similarly, one obtains Dy

N and Dz
N ,

the discrete RBF-FD approximations to the y and z components, respectively,
of the projected gradient operator.

These operators are then used to construct a discrete approximation to RHS
in (3):

RHSD =




u ◦Dx
Nu + v ◦Dy

Nu + w ◦Dz
Nu

u ◦Dx
Nv + v ◦Dy

Nv + w ◦Dz
Nv

u ◦Dx
Nw + v ◦Dy

Nw + w ◦Dz
Nw

+ f




y ◦ w − z ◦ v

z ◦ u− x ◦ w

x ◦ v − y ◦ u




+ g




Dx
N

Dy
N

Dz
N




h




,

where ◦ denotes element by element multiplication of the vectors and the
underlined variables represent evaluation at the node locations. The full dis-
cretized equations are given by

∂u

∂t
=−px · RHSD,

∂v

∂t
= −py · RHSD,

∂w

∂t
= −pz · RHSD, (6)

∂h

∂t
= u ◦Dx

Nh + v ◦Dy
Nh + w ◦Dz

Nh + h ◦ (Dx
Nu + Dy

Nv + Dzw) , (7)

where px, py, pz are the vectors px,py,pz evaluated at the nodes {xj}N
j=1. The

system is advanced in time using the classical Runge Kutta 4th-order method
(RK4).
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4 Nodes, parameters and hyperviscosity

This section discusses the nodes and parameters with their associated scalings
that are involved in executing the RBF-FD method for hyperbolic systems
on a sphere. Section 4.1 overviews the various node layouts considered. Sec-
tion 4.2 discusses the need for and type of hyperviscosity used. Section 4.3
details the parameters involved in the RBF-FD method (including those for
hyperviscosity) and the heuristic methodologies used to scale them.

Please refer to the Appendix for a step-by-step general guideline to choosing
the parameters involved when modeling hyperbolic PDEs with RBF-FD.

4.1 Nodes layouts

We use three different kinds of node distributions on the sphere, illustrating
the relative insensitivity of RBFs to the node layout that is used. The only
requirement is that nodes are distinct, forming a quasi-uniform distribution
over the sphere. The node sets used are minimum energy (ME) [44], maximum
determinant (MD) [43,44], and icosahedral (ICO) [1], displayed in Figure 2.

(a) ME nodes (b) MD nodes (c) ICO nodes

Fig. 2. The different node sets used in the numerical experiments.

4.2 Hyperviscosity

Stability issues for RBF-FD emanate from the fact that the natural intrinsic
irregularity of the RBF-FD stencils causes eigenvalues of the DM to scatter
into the right half of the complex plane as shown in Figure 3a. This becomes
a hurdle to the RBF-FD method when 1) solving naturally dissipation-free
PDEs, such that even a very mild numerical scatter of the eigenvalues into
the right half complex plane can cause severe instability and 2) using large
RBF-FD stencils, since as the stencil size increases so does the scatter of
eigenvalues. This latter point is even an issue for systems with dissipation, in
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which case the scatter is likely to be too large for the natural dissipation to
control.

In this paper we have both dissipation-free PDEs and large stencils. Therefore,
we need to use hyperviscosity to stabilize the RBF-FD method (to date the
only known stabilization method for RBF-FD). While a regular viscosity term
typically involves the Laplacian operator, a hyperviscosity operator takes the
form γ · ∆k where γ is a very small constant, and k is some relatively large
integer, typically in the range of 4 to 10, or higher still. Since the purpose
of hyperviscosity is to suppress the highly oscillatory modes while leaving all
the smooth ones intact, it suffices to ignore the local curvature of the sphere,
and calculate ∆kφ(r) as if the RBF-FD stencil was located on a 2D flat plane.
Even in 2D though, one can see that as k increases, the formula for calcu-
lating ∆k can rapidly become very complicated or computationally expensive
if calculated by consecutively applying the Laplacian operator. However, for
Gaussian RBFs, an explicit formula is available in terms of generalized La-
guerre polynomials for implementing ∆k (see equation (3.1) and (3.2) in [21]).
This renders the construction of the hyperviscosity operator both elegant and
computationally inexpensive. For illustration purposes, Figures 3a and b show
the effect of a ∆4-type hyperviscosity for N = 400 and n = 31. Although not
needed for stability for the time integration lengths considered in these test
cases, a filter term is added also for global RBFs, as a small increase in accu-
racy was noted. In this case, it is given by γA−1, where A is the interpolation
matrix in (1) minus the last row and column (i.e. not enforcing the constraint∑n

k=1 ak = 0) [21].

−0.5 0 0.5
−3

−2

−1

0

1

2

3

Re λ

Im
λ

(a) No hyperviscosity

−0.5 0 0.5
−3

−2

−1

0

1

2

3

Re λ

Im
λ

(b) With hyperviscosity

Fig. 3. Plots of the eigenvalue spectrum with the RK4 stability domain (solid line)
for the shallow water equations linearized about the initial state of the Rossby-Hau-
rwitz wave test case; (a) without hyperviscosity and (b) with a ∆4-type hypervis-
cosity added.
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4.3 On the choice of parameters

• RBF type: For the global RBF method, the differences in performance
between smooth RBFs are minor [23]. Inverse multiquadrics was chosen
here since numerical tests suggested it to be slightly less sensitive to the
choice of the shape parameter. For the RBF-FD method, Gaussian RBFs
were used as this permitted the application of simple recursive formulas
for the hyper-viscosity filter.

• Node type: All numerical results for the global method were achieved
with ME nodes, as these gave marginally better results. The RBF-FD
method used MD nodes since larger node sets are available. Additionally,
icosahedral node sets of 40, 962 and 163, 842 nodes were utilized for the
high resolution simulations with RBF-FD.

• Shape parameter (ε): To avoid saturation error (see Section 15.4 in
[14]), ε was kept constant, at ε = 5, for the global RBF method. Numer-
ical tests indicated that the test cases were relatively insensitive to the
value of ε for N = 3600 to 6400, with the later being the largest node set
used for global RBFs. For RBF-FD, the node spacing may vary by orders
of magnitude as the total number of nodes is increased. In order to scale
to large node sets, ε is chosen such that the mean condition number of
the RBF-FD interpolation matrices κ̄A = 1

N

∑N
i=1(κA)i is kept constant

as N increases ((κA)i is the condition number of the interpolation matrix
in (1), representing the ith stencil). While this scaling does introduce the
danger of saturation errors, convergence only for very large N , on the
order of 105 (i.e. approximately 60km resolution), showed to be at risk.
Currently there is no effective stable algorithm as ε → 0 for RBF-FD
on a sphere, although progress is being made in that direction. A mean
condition number, κ̄A, on the order of 1010 to 1012 was found to give
RBF-FD a competitive edge with regard to the accuracies reported by
other high order methods in the literature.

Figures 4a and b show that for a constant mean condition number, ε
varies linearly with

√
N . This is not surprising since the condition number

strongly depends on the quantity εr, where r ∼ 1/
√

N . Thus, to obtain a
constant condition number, we let ε(N) = c1

√
N−c2, where c1 and c2 are

constants that were fitted to the data. The values used for the numerical
simulations are shown in Table 1. (For more detailed guidelines, see step
5 in Appendix).

• Order of the hyper-viscosity (k): The order of the Laplacian operator
for the hyper-viscosity filter should be chosen large enough such that low
modes are not excessively damped. However, increasing the order too
much might introduce spurious eigenvalues in the filter matrix. As the
stencil size n increases, an increasingly wider range of physical ‘modes’
of the PDE gets treated accurately. It is essential that the hyperviscosity
filter leaves all of these basically unaffected. This is achieved by gradually
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bringing up the order k of the hyperviscosity as n increases. The values
in Table 1 were chosen to ensure stability while keeping diffusion as low
as possible. (See step 2 in Appendix).

• Damping coefficient (γ): For the time integration lengths of the present
test cases, the global method is stable without damping and the value
γ = −150 · N−3 was chosen purely for optimal accuracy (negative sign
due to fact we are using positive definite radial functions). For the local
method, γ must be chosen with care as the method will become unstable
if the damping is insufficient. With the chosen scaling of ε, it was found
experimentally that the choice γ = γcN

−k, where k is the order of the
Laplacian and γc is a constant, provides stability and great accuracy for
all values of N considered here. This also ensures that the viscosity van-
ishes as N →∞. The values for γc are given in Table 1. Notice that the
quantity γcN

−k will vary from about O(10−20) to O(10−45) for the values
of N considered in this paper. In other words, only a very minute amount
of hyperviscosity is added to stabilize the RBF-FD method. (See step 4
in Appendix, noting also step 6.)

Table 1
The parameters for the numerical simulations.

n κ̄A

ε = c1

√
N − c2 γcN

−k∆k

c1 c2 k γc

17 4 · 1010 0.026 0.08 2 −8 · 10−4

31 3 · 1012 0.035 0.1 4 −5 · 10−2

50 3 · 1013 0.044 0.14 6 −5 · 10−1

101 3 · 1014 0.058 0.16 10 −5

√

N

ε
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(a) n = 31
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(b) n = 101

Fig. 4. The mean condition number of the interpolation matrix, κ̄A, as a function
of
√

N and ε. a) for a stencil size of n = 31, b) for a stencil size of n = 101.
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5 Numerical Studies

We will consider 3 test cases: 1) Flow over an isolated mountain that is C0,
to study the effects of Gibbs phenomena; 2) Rossby-Haurwitz waves, to study
how the method handles an unstable solution of the SWE; 3) Evolution of a
highly nonlinear wave with rapid energy transfer from large to small scales,
resulting in complex vortical dynamics. Since there are no analytical solutions,
three high resolution reference models are considered as ‘truth’ based on, high-
order DG (MUSE model), spherical harmonics (DWD model), and RBF-FD.
They are described below.

(1) DG: The DG results are computed using MUSE, the latest discontin-
uous Galerkin spectral element model at NCAR for the simulation of
conservation laws. It has the capability of using either structured or un-
structured grids combined with dynamic hp-adaptation to capture the
multiscale aspects of the flows, efficient computational kernel implemen-
tation and high parallel performance. The model has been recently used
to solve the shallow water equations on the sphere [4]. To this aim, the
flows are expressed in three-dimensional Cartesian coordinates but tan-
gentially constrained to the sphere by adding a Lagrange multiplier to
the system of equations. The simulations used as references herein have
been performed on a cubed sphere grid made up of 6144 elements. Each
element contains 12x12 nodes to represent the solution, which results in
a total of 884736 degrees of freedom and an average resolution around 26
km. For computing these reference solutions, no dissipation mechanism
was found to be needed. However, for the run time versus error compu-
tations in Figure 19 in Section 6, the two dimensional exponential filter
described in [28] was applied.

(2) DWD-SH: The DWD (Deutscher Wetterdienst, German National Weather
Service) spectral transform shallow water model (see http://icon.enes.org/)
is an updated derivative of the NCAR spectral transform model. It is
based on spherical harmonics (SH) implemented with de-aliasing, using
Orszags 2/3 rule [27] and has become the standard reference solution in
the community. For the flow over a mountain test, it has a spectral trun-
cation of T426, that is it uses 182,329 spherical harmonic bases. For the
Rossby-Haurwitz wave test, it has a spectral truncation of T511, that is
it uses 262,144 spherical harmonic bases.

(3) RBF-FD: This is a high resolution RBF-FD model based on N = 163, 824
icosahedral nodes on the sphere, representing a 60km resolution. It uses
a stencil size of n = 31.
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5.1 Flow over an isolated mountain

This test case, originally used in [37] and popularized by [42], deals with
predominantly west to east flow over a cone shaped mountain having a radius
R of approximately 1925 km. The surface of the mountain is a C0 function
defined for simplicity in spherical coordinates by

hmtn = hmax(1− d/R) (8)

where hmax = 2000m, R = π/9, and d2 = min[R2, (λ − λc)
2 + (θ − θc)

2]
with (θc, λc) being the center of the mountain at latitude 30oN and longitude
−90oW. It should be noted that in Cartesian coordinates the mountain will
no longer be circular but elliptical in shape. Equation (8) is added as a forcing
term to the right hand side of the PDE for the geopotential height h given
in (7). Adjustment of the flow to the presence of an undifferentiable moun-
tain results in a ringing phenomena of gravity waves whose signature echoes
throughout the 15 day simulation. In order to differentiate between errors due
to a non-smooth forcing, which causes Gibbs phenomena in any high-order
method, and those errors inherent in the RBF-FD method, we compare the
results for convergence and accuracy against test runs that use an exception-
ally steep Gaussian profile that is C∞ for the mountain, given by

h(λ, θ) = hmaxe
−(2.8 d

R
)2 , (9)

where hmax, d and R are the same as for the cone mountain. The initial con-
ditions are given by,

h = h0 − 1

g
(aΩu0 +

u2
0

2
)z2, u = u0{−y, x, 0}, (10)

where h0 = 5400m (mean reference height), g = 9.80616m, u0 = 20m/s,
a = 6, 371, 220m (mean radius of the earth), and Ω = 7.292(10)−5s−1 (rotation
rate of the earth). Both mountain profiles are given in Figure 5. The test case
is run for 15 days. A time-series of the solution with N = 25, 600 and n = 31
is given in Figure 6 for the case of the conical mountain.

a. Spatial errors and convergence

Figure 7 shows the solution at day 15 for various resolutions juxtaposed with
the pointwise absolute error where the DG reference solution is used. In all
cases, the stencil size is n = 31. With as little as N = 3600 nodes, the general
pattern of the flow is captured with the largest error being directly downstream
from the mountain. By N = 25, 600 nodes, the error has dropped to only 2m
as seen in Figure 7(f), which corresponds to a relative `∞ error of 3.4 · 10−4.
To better understand the convergence rate of the scheme, the normalized `2

error as a function of N is plotted in Figure 8(a) using the three different
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(a) Cone (b) Gaussian

Fig. 5. The mountain profiles with N = 3600.
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Fig. 6. The height field h for flow over a conical mountain at day 0,5,10,15 with
N = 25, 600 and n = 31. The white circle indicates the base of the mountain.

reference solutions. In order to assess how RBF-FD compare to global RBF,
a convergence plot for the latter is given in Figure 8(b). Note since all plots
are log-log, plotting against N rather than the spatial resolution,

√
N , only

stretches the x-axis by a factor of 2 and makes for easier reading.

Figure 8(a) shows that the normalized `2 error is an order of magnitude larger
when the DWD-SH reference solution is used, as opposed to DG or the RBF-
FD (N = 163, 842) reference solutions. Furthermore when these latter refer-
ence solutions are used, the normalized `2 errors are almost identical (notice
the ◦ overlay the 2 in Figure 8(a)). This same trend is also seen in Figure
8(b) with global RBFs, a different approach than both RBF-FD and DG that
does not require hyperviscosity. Given that DG, RBF-FD, and global RBFs are
vastly different numerical methods, strongly indicates that the DWD-SH T426
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(f) N = 25600, n = 31

Fig. 7. Left column: The height field h for flow over a conical mountain at day 15
for varying N with n = 31. Contour interval is 50m. Right column: Magnitude of
the error between the RBF-FD solution and the DG reference solution. Contour
interval for N=3600 is 2m, for N=6400 is 1m, and for N=25,600 is 0.5m.

spectral simulation is providing a less accurate solution. This is further sup-
ported by the few articles that do report `2 errors for this test case [34,35,38],
all of which use either the NCAR or DWD SH reference solution, and obtain
errors on the order of 10−4, which is an order of magnitude larger than that
obtained by DG or RBF-FD. This is the reason that DG solution is chosen as
the reference solution in Figure 7 as well as throughout the rest of the paper
with regard to this test case.

Next, we consider flow over a very steep C∞ Gaussian mountain given by
Figure 5(b). Figure 9(a) displays the solution at day 15 juxtaposed with the
magnitude of the error when compared to the DG reference solution. The two
things to notice are that the solution looks essentially identical to the solution
of the conical mountain; however, Figure 9(b) shows that there is much less
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(b) Global RBFs

Fig. 8. The normalized `2 error in the height field h as a function of N for flow over
a conical mountain at day 15 for (a) RBF-FD and (b) global RBFs. The different
markers correspond to different reference solutions.

“ringing”, i.e. high frequency waves, emanating throughout the domain. In
fact, if one excludes the few contours in the upper right corner of Figure 9(b),
the errors (in the white region) have dropped to well below 0.1m (recalling
a background mean reference height of 5400m). Another consequence of the
“wringing” or Gibbs phenomena from the conical cone is that the accuracy of
the RBF-FD method does not indefinitely increase with stencil size n, as shown
in Figure 10(a). After n = 31, stencil size has no bearing on accuracy when a
non-smooth mountain forcing is present. Hence, this is the stencil size chosen
for this test case. In contrast, Figure 10(b) demonstrates how the accuracy
of the RBF-FD method for a C∞ solution does increase as n increases, that
is as the derivative approximations become more global. However, even with
a smooth forcing, the rate of convergence is not much greater than for the
cone case, since both the Gaussian or cone mountains are so steep, leading
to under-resolution even for very large nodes sets. To overcome this, adaptive
node refinement in the area of the mountain needs to be used, as was done
in [35].
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Fig. 9. (a) The height field h at day 15 for flow over a Gaussian mountain with
N = 25, 600 and n = 31. Contour interval is 50m. (b) Magnitude of the error
between the RBF-FD solution and the DG reference solution. Contour interval is
0.5m.
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Fig. 10. The normalized `2 error in the height field h at day 15 as a function of N
for different stencil sizes n for flow over a (a) conical mountain and (b) Gaussian
mountain. Reference solution is the RBF-FD N = 163, 842.

a. Temporal errors

Figure 11 shows the time trace of the normalized `2 error for the 15 day
simulation using the cone mountain. As can be seen, the error grows linearly
in time which is what would be expected with such a non-smooth forcing.
From the end of day 1 to day 15, the normalized `2 error has increased by
a factor of three. Table 5.1 gives the corresponding time steps used for each
node set and the associated relative `2 error. It must be noted that these time
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steps were not chosen for stability of the scheme since larger ones could have
been taken, but to match spatial errors with temporal errors. This is shown
in Figure 12 for both N = 3600 nodes and N = 25, 600 nodes with n = 31.
The RBF-FD spatial discretization allows for these large time steps due to
the near uniform nodes. It is the temporal accuracy that actually limits the
size of the time step.
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Fig. 11. The normalized `2 error in the height field h as a function of time with a
cone mountain forcing for N = 25, 600 and n = 31.

N Resolution (km) Node type ∆t (minutes) `2

3600 400

MD

20 5.6 · 10−4

6400 300 15 2.7 · 10−4

12100 220 12 1.3 · 10−4

25600 150 5 6.0 · 10−5

40962 120
ICO

3 2.5 · 10−5

163842 60 1 1.2 · 10−5

Table 2
Time steps used for the cone mountain case with respective spatial resolution and
relative `2 error, using n = 31. The error is measured against the DG reference
solution.

5.2 Rossby–Haurwitz waves

This test is proposed in [42]. The initial state is a Rossby–Haurwitz wave
of wavenumber four. For the nondivergent barotropic vorticity equation, this
initial condition is the solution, steadily propagating without change of shape
from west to east on a sphere. However, the SWE can only approximate this
motion, generating inherent instabilities in the flow [39]. As a result, this test
has been controversial in its usefulness [7, 26]. Even so, it is still commonly
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(b) N = 25600, n = 31

Fig. 12. The error at day 15 in the flow over a cone mountain test case as a function
of the time step using RK4 for (a) N = 3600 and (b) N = 25, 600. The error is
measured against the DG reference solution.

used as a test case for novel numerical schemes in atmospheric modeling [7,
30,35,48]. However, it should be noted that these instabilities necessitates the
use of a filter, regardless of the numerical scheme.

Figure 13 gives four RBF solutions at day 15: two RBF-FD solutions with
N = 6400 nodes and stencil sizes of n = 31 and n = 101, Figure 13(a)
and Figure 13(b), respectively, the global RBF solution with N = 6400, Fig-
ure 13(c), and the RBF-FD reference solution, Figure 13(d). Comparing the
global RBF solution and RBF-FD reference solution to the DG and DWD-SH
T511 reference solutions given in Figures 13(e) and 13(f), they are essentially
indistinguishable from one another. With only N = 6400, RBF-FD visually
captures the majority of features of the unstable flow using a stencil size of
n = 101, which corresponds roughly to an ninth-order method. In Figure 13(a),
the use of an n = 31 stencil shows greater differences especially at about ±50◦

latitude (notice concentric circular contours in blue area absent in the other
figures). This may lead to the question of why an n = 31 stencil was used
for the high resolution RBF-FD case in Figure 13(d). The reason is that for
higher resolution, i.e. larger N , the results between a high and low stencil size
are indistinguishable. This is reflected in Figure 14 that shows the normalized
`2 error in the height field as a function of time for the 15 day run, using
N = 25, 600 nodes. Notice there is only a slight difference between using a 31
node stencil as opposed to a 101 node stencil. The likely explanation is that
by this resolution we have basically resolved most of the features of the flow
and increasing the order of the derivative approximations, i.e. n, one gains
little in accuracy. While at coarser resolutions as N = 6400 one needs larger
stencils to capture the higher frequencies of the flow. In other words, there is
a tradeoff between the coarseness of the resolution N and order of the method
needed, represented by the stencil size n. Similar tradeoffs are encountered in
other contexts, such as domain decomposition schemes and ode solvers.

Next, the convergence of the RBF-FD method is considered in Figure 15 by
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plotting the normalized `2 error in the height field as a function of N for the
3 different reference solutions. The line type represents the RBF-FD stencil
size used, n = 31, n = 101, or global RBFs. The marker, ‘o’, ‘2’, or ‘×’,
represents the reference solution used. At day 5, whether we use the RBF-FD
or DG reference solution, the `2 errors for any of the cases n = 31, n = 101, or
global, are almost identical (notice that the ‘2’ closely overlay the ‘o’). At the
highest resolution of 60km (N = 163, 842, n = 31), the RBF-FD method gives
an error of 1.9 · 10−5 when compared to the DG reference solution while with
the T511 reference solution the error is about 3 times larger. Also, notice that
after N = 25, 600, the error flattens out with the T511 reference solution for
the RBF-FD cases. By day 15, all the errors have increased by one to one and
a half orders of magnitude. For a given case, there is not much difference in
what reference solution is used, except at N = 163, 842 where the DG reference
solution gives an error that is about twice as large as the T511 solution.
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Fig. 13. The solution for the Rossby-Haurwitz test case at day 15. Contour interval
is 200m.
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Fig. 14. A time series of the error measured against the DG reference solution for
the Rossby-Haurwitz test case, with N = 25, 600.
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Fig. 15. The normalized `2 error as a function of N for the Rossby-Haurwitz test
case. The different markers correspond to different reference solutions. The line type
corresponds to the stencil size or global RBFs.

5.3 Evolution of highly nonlinear wave

From a numerical standpoint, this test is the most challenging in the paper,
generating complex vortical dynamics [26]. It describes the evolution of a
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highly nonlinear wave with rapid energy transfer from large to small scales
over a short time period. The adjustment of the background flow to the initial
perturbation results first in high frequency gravity waves propagating around
the sphere, later followed by the roll-up of the initial flow into vortices with
very sharp gradients. Due to its complexity, it has gained popularity as a test
case [29,31].

The background flow is only a function of latitude, θ, and is given by:

u(θ) =





0 for θ ≤ θ0

umax

en

exp

[
1

(θ − θ0)(θ − θ1)

]
for θ0 < θ < θ1

0 for θ ≥ θ1

(11)

where umax = 80ms−1, θ0 = π/7, θ1 = π/2− θ0, en = exp(−4(θ1 − θ0)
2). The

initial background geopotential height field, assuming −π/2 ≤ θ ≤ π/2, is
given by

h(θ) = h0 + 1/g
∫ π/2

−π/2
u(θ′) [2aΩ cos(θ′) + tan(θ′)u(θ′)] dθ′, (12)

where h0 = 10158.295m (reference depth) and all other constants have the
same value as in the flow over the mountain test case. To generate the in-
stability, the height field is perturbed by Gaussians multiplied by a cosine to
force the perturbation to go to zero at the poles. The perturbation h′(λ, θ) is
given by

h′(λ, θ) = 120 cos(θ) exp


−

(
λ

3

)2

 exp


−

(
π/4− θ

15

)2

 for −π < λ < π.

(13)

Figure 16 shows the rapid evolution of the wave from day 3 to day 6 using N =
25, 600 and n = 101 (before day 3 only a band of negative-blue and positive-
red vorticity is seen with essentially little visible oscillations). In Figure 17,
we study how well the wave is resolved as a function of both N and n. For
n = 31, a ∆4 - type hyperviscosity was used and for n = 101, a ∆10 - type
hyperviscosity was used. For the constants in front of the hyperviscosity, refer
to Table 1. There are two main concerns with this test case: a) how well
the sharp gradients are resolved and b) the effect of Gibbs phenomena. As
we increase both N and n, the gradients are resolved better as would be
expected since both the resolution and order of the method are increasing.
For the largest resolution case of N = 163, 842 (60km or 0.54◦ × 0.54◦), the
solution is extremely similar to that given by the high-order DG solution with a
resolution of 39km or 0.35◦×0.35◦. However, as with regular finite differences,
the higher the order of the method, i.e. n in the case, the more prominent
the Gibbs phenomena. Here, n = 101, would correspond approximately to a
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ninth-order method. Notice for the n = 101 plots the contour lines are more
jagged, reflecting the effects of Gibbs phenomena. Another interesting feature
to note is that the RBF-FD method is able to produce the basic wave pattern
structure even at very coarse resolutions such as N = 6400 (4.5◦ × 4.5◦).
This is not the case with a DG, spectral element method, or a finite volume
method. At such coarse resolutions, the DG (MUSE) and spectral element [35]
methods instead produce features of the grid such as an artificial wavenumber
four pattern for the cubed-sphere. The finite volume method is noted to be
so dissipative in [35] (see Figure 13) that no spatial structures appear until a
resolution of 2.5◦ × 2.5◦.

6 Time benchmarking

The RBF-FD code was benchmarked in terms of wall clock time against the
DG (MUSE) code on a MacBook Pro laptop with an Intel i7 2.2GHz quad-core
processor, using only a single core, and 8GB of memory. This configuration
was chosen to compare the vastly different codes on the most basic level. The
RBF-FD code was written in MATLAB and the DG (MUSE) code in C++. It
should be mentioned that the RBF-FD method is easily parallelized on multi-
core/processor machines [5, 6]. The flow over the isolated mountain test case
was chosen to benchmark. The mesh specifications used in the DG timings
are given in Table 6, where N − 1 is the highest degree polynomial used per
element and R can be interpreted as how many times a face of the cubed
sphere is subdivided. As can be seen in Figure 18(a), R0 represents the cubed
sphere, for R1 each face of the cubed sphere has been subdivided once so that
there are 4 elements per face, and so on. The RBF-FD solution of N = 163, 842
and n = 31 (i.e. ≈ 60km resolution) was used as the reference solution in the
timings. As a result, the plotted errors for the RBF-FD method in Figure 19
all use n = 31 with N ranging from 3136 to 40, 962. For all resolutions, the
RBF-FD method was computationally faster than the DG method. However,
as mentioned earlier in Section 4, saturation errors in the RBF-FD method did
not allow it to have a higher resolution than about 50km. This is not seen as a
drawback, since saturation errors can be eliminated by doing the calculations
with a smaller shape parameter ε using a flat basis function algorithm. On the
sphere using global RBFs, such an algorithm has been available since 2007 [22].
For RBF-FD, algorithms are currently expected to be available within a year
(personal communication Bengt Fornberg, Elisabeth Larsson, Grady Wright).
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R1N4 R1N6 R1N8 R2N6 R2N8 R3N6 R3N8

Resolution (km) 1251 834 625 417 313 208 156

Elements per face 4 4 4 16 16 64 64

Polynomial order 3 5 7 5 7 5 7

Number of d.o.f. 384 864 1536 3456 6144 13824 24576
Table 3
Samples of mesh specifications for the DG model. “d.o.f.” stands for degrees of
freedom.

7 Conclusion

This paper 1) demonstrates how to implement radial basis function generated
finite differences (RBF-FD) for nonlinear systems of purely convective PDEs
that model complex dynamics on the sphere, specifically with regard to choices
of the shape parameter and the order of the hyperviscosity with respect to the
stencil size and 2) compares the performance of RBF-FD to other state-of-
the-art high-order numerical methods currently used, such as a discontinuous
Galerkin model recently developed at NCAR and a spherical harmonic trans-
form model used by both NCAR and the Deutscher Wetterdienst (DWD -
German National Weather Service) as a reference.

The general conclusions of the paper are:

• When modeling dynamics that have a wide range of time and spatial
scales as here, the RBF-FD method requires hyperviscosity to stabilize
it. However, the order of the viscosity is high, ∆4 to ∆10, depending on
the stencil size, where ∆ represents the Laplacian operator. This oper-
ator is then multiplied by a scaling constant such that the amount of
hyperviscosity added is minute, O(10−20) to O(10−45).

• It is shown that the NCAR/DWD spectral transform method, based on
spherical harmonics, does not seem to provide as accurate a solution
as the other methods for flows where there is Gibbs phenomena, even
though it has been the standard reference solution in the literature for
nearly twenty years. This conclusion was based on the excellent agree-
ment between DG, RBF-FD, and global RBFs, which gave an order of
magnitude higher accuracy.

• The Rossby-Haurwitz wave test demonstrated that as the resolution in-
creases, the difference in accuracy between using small and large stencils
to calculate the derivatives at the node locations became negligible. Thus,
RBF-FD can be looked at as an O(N) method per time step, N being
the resolution. This result was also reflected in time benchmarking.
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• For the evolution of a highly nonlinear wave with sharp gradients, as the
size of the stencil n increased, i.e. the order of the method increased,
RBF-FD began to exhibit the expected Gibbs phenomena. However, its
solution at a 60km resolution highly resembles that of the 39km reso-
lution DG reference solution for this test. It also proved, unlike other
numerical methods, to be able to capture the basic wave structure even
at a very coarse resolution of 300km.

• Comparing runtimes on a laptop using a single core of a quad-core pro-
cessor, the RBF-FD method was computationally faster than the DG
method, from about an order and a half of magnitude for coarser resolu-
tions to 4 times faster for the finest resolution compared. However, sat-
uration errors in the RBF-FD method did not allow it to have a higher
resolution than about 50km. That is, further increasing N requires a si-
multaneous increase in ε to maintain stability such that error stagnation
results. With stable numerical algorithms that handle RBF-FD in the flat
basis function regime, this need to increase ε with resolution is eliminated
and thus so are saturation errors. Several types of stable algorithms have
been developed for RBF interpolation [20,22,24]. Presently, projects are
under way for adapting these algorithms to the task of creating general
RBF-FD stencils (including approximations for hyperviscosity). It can
therefore be expected that in the future saturation errors will cease to be
a concern in the context of RBF-FD.
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Appendix: A strategy for choosing parameters when using RBF-FD
to solve hyperbolic PDEs

The steps below outline a general guideline by which we choose the parameters
involved in modeling hyperbolic PDEs with RBF-FD. This appendix follows
what was outlined in Sections 4.2 and 4.3. However, we do stress that some
trial and error is still involved.

(1) First, choose a stencil size n; as n increases, so does the accuracy of the
RBF-FD method. The larger n is, more eigenmodes are represented cor-
rectly.

(2) Next, choose the order for the hyperviscosity, k, which is directly depen-
dent on n. The larger k is, more eigenmodes are preserved correctly when
the hyperviscosity is applied (see Fig. 3.1 in [21]). Table 1 shows that as
n increases so does our choice for k, but by how much will depend on the
PDE being solved.

(3) For a given n and k, we choose ε for a small node set N (e.g. N = 2500)
such that we compute at a high condition number for the RBF-FD in-
terpolation matrix A (denoted κA), generally κA = 108 to 1012 as shown
from experience. If the investigator has any result (e.g. from other model)
to calibrate against, it is very useful and computationally cheap for small
N to plot the error versus ε for different κA in order to choose which
condition number works best. If not, then one should choose κA in ap-
proximately this range such that the answer is relatively robust to changes
in 2500 / N / 5000.

(4) Next, for the same small N and given that we have chosen n, k, and ε
from the steps above, we plot the eigenvalues of the linearized discrete
right hand side operator of our PDE system. The amount the eigenvalues
are pushed into the left half complex (as in Fig. 3) then becomes propor-
tional to γcN

−k, where γc is a small fine tuning parameter and increases
with n as shown in Table 1. The final result should be that the eigenval-
ues lie within the time-stepping stability domain being used but still as
close as practical to the imaginary axis.

(5) As N increases, we scale ε so that κA remains relatively constant. This
type of scaling is shown Figure 4. Although we use the mean κA over all
RBF-FD stencils, for roughly evenly space nodes, one can use any κA for
a single stencil since they will be roughly the same. To reconstruct Figure
4 is not difficult and can be done in the following manner.

If we change
√

N → c
√

N and ε → cε, the A matrices are left invariant
and therefore κA = f(ε/

√
N). That is κA is constant along straight lines
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through the origin in the (ε,
√

N) plane. Now, it just remains to deter-
mine how κA depends on the slope and on n. Due to its local nature, the
RBF-FD stencil on a sphere can be viewed as existing on a 2D plane. On
p.389 in [25], the authors give a formula for κA as a function of n for the
2D non-periodic case. As an example, let n = 31, then κA = c(ε/

√
N)−14.

Thus increasing the slope by a factor of α decreases log10 κA by 14 log10 α.
So in Figure 4(a), we only have to compute κA for a single case of n, N ,
ε and we get a good approximation of the full plot. Notice in our paper
we did a small fine tuning with the ε-intercept (c2), such that the lines
do not go through the origin but around 0.1. This was only to calibrate
to the DG results to demonstrate the capability of the RBF-FD method
and is not necessary.

It should be noted that as we go from using node sets of O(104) to
O(105), the κA we compute at increases, i.e. we switch to lines of shal-
lower slope in Figure 4.

(6) Lastly, we verify the stability for the larger node set using the parame-
ter γcN

−k computed in step 4. If unstable, increase the parameter until
stability is ensured. The artificial dissipation typically requires a small
safety factor to account for variability in the node sets.
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(d) Day 6

Fig. 16. The evolution of the nonlinear wave. The relative vorticity for
N = 25600, n = 101 is plotted. Contour interval is 2 · 10−5s−1 and the zero contour
is not shown.

30



Longitude

L
a
ti
tu

d
e

Max: 1.19 · 10−4
s
−1, min: −1.07 · 10−4

s
−1

 

 

−150 −100 −50 0 50 100 150
0

20

40

60

80

−1

0

1

x 10
−4

(a) N = 6400, n = 31
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(f) N = 25600, n = 101
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(g) N = 163, 842, n = 31

(h) DG, 39km resolution

Fig. 17. The relative vorticity at day 6. Contour interval is 2 · 10−5s−1 and the zero
contour is not shown.
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(a) R0 (b) R1 (c) R2 (d) R3

Fig. 18. Mesh resolution for the DG model. The meshes used for the different sim-
ulations are obtained by splitting recursively the elements of the initial cube mesh
R0.
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Fig. 19. The error as a function of runtime (defined by wall clock time) for the flow
over the cone mountain test case.
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