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Abstract

Radial basis function-generated finite differences (RBF-FD) is a mesh-free method for numerically
solving partial differential equations that emerged in the last decade and have shown rapid
growth in the last few years. From a practical standpoint, RBF-FD sprouted out of global
RBF methods, which have shown exceptional numerical qualities in terms of accuracy and
time stability for numerically solving PDEs, but are not practical when scaled to very large
problem sizes because of their computational cost and memory requirements. RBF-FD bypass
these issues by using local approximations for derivatives instead of global ones. Matrices in the
RBF-FD methodology go from being completely full to 99% empty. Of course, the sacrifice is the
exchange of spectral accuracy from the global RBF methods for high-order algebraic convergence
of RBF-FD, assuming smooth data. However, since natural processes are almost never infinitely
differentiable, little is lost and much gained in terms of memory and runtime. This chapter provides
a survey of a group of topics relevant to using RBF-FD for a variety of problems that arise in the
geosciences. Particular emphasis is given to problems in spherical geometries, both on surfaces and
within a volume. Applications discussed include nonlinear shallow water equations on a sphere,
reaction–diffusion equations, global electric circuit, and mantle convection in a spherical shell.
The results from the last three of these applications are new and have not been presented before
for RBF-FD.

1 Introduction to the Concept of Radial Basis Functions (RBFs)

The motivation for the RBF method originated with R.L. Hardy asking the question, “Given a
set of sparse scattered data, ffj gNjD1, at the node locations fxj gNjD1 � R

d , can an interpolant be
constructed that adequately represents the unknown surface?” (Hardy 1971). It was first shown by
Mairhuber (1956) that, in more than one dimension, interpolation is not well posed when using an
expansion of basis functions, f j .x/gNjD1, x 2 R

d�2, that are independent of the node locations.
That is, there exist an infinite number of node configurations that will yield a singular interpolation
problem. Hardy bypassed this singularity problem by constructing the interpolant from a basis
function set consisting of translates of a single radially symmetric function with one centered at
each data location. By giving up orthogonality, well posedness of the interpolant and its derivatives
for any set of distinct scattered nodes in any dimension is guaranteed. Although unconditional non-
singularity of the interpolation problem was known early in some special cases (Bochner 1933;
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Table 1 Some common choices for radial functions

Type of basis function Radial function �.r/

Piecewise smooth RBFs
Generalized Duchon spline (GDS) r2m log r; m 2 N

r2m; m > 0 andm … N

Matern 21�m

�.m/
rmKm.r/;m > 0 (Bessel K-function)

Special cases: e�r , e�r .1C r/ for m D 1
2
; 3
2
.

Compact support (“Wendland”) .1 � r/mCp.r/; p certain polynomials,m 2 N
Infinitely smooth RBFs
Gaussian (GA) e�."r/2

Multiquadric (MQ)
p
1C ."r/2

Inverse multiquadric (IMQ) 1=
p
1C ."r/2

Inverse quadratic (IQ) 1=.1C ."r/2/

Sech (SH) sech "r
Bessel (BE) (d D 1; 2; : : :) Jd=2�1."r/=."r/d=2�1

Schoenberg 1938), the proof in 1986 of guaranteed non-singularity for multiquadric (MQ) RBFs
(Micchelli 1986) accelerated the further development and acceptance of RBFs. Pioneering work
by M.J.D. Powell and his collaborators at University of Cambridge played also a major role in the
early history of RBFs (Powell 1992).

Piecewise smooth RBFs feature a jump in some derivative and thus can only lead to algebraic
convergence. For example, the radial cubic jr j3, where r D kx � xjk is the Euclidean norm, has
a jump in the third derivative at x D xj , leading to fourth-order convergence in 1D, with the
order of convergence increasing as the dimension increases (cf. Powell 1992). On the other hand,
interpolating with infinitely smooth RBFs, such as

p
1C ."r/2, exp

��."r/2�, and 1=
�
1C ."r/2

�
,

will lead to spectral convergence (Madych and Nelson 1992; Yoon 2001). Table 1 shows commonly
used RBFs, noting that infinitely smooth RBFs depend on a shape parameter ". It was first shown
by Driscoll and Fornberg (2002) that, in 1D, in the limit of " ! 0 (i.e., flat RBFs) the RBF
methodology reproduces pseudospectral methods (PS) if the nodes are accordingly placed (i.e.,
equispaced nodes for Fourier methods, Gauss–Chebyshev nodes for Chebyshev methods, etc.).
Similarly, on the surface of a sphere, Fornberg and Piret (2007) showed that, in the limit of
" ! 0, RBFs reproduce spherical harmonics in the sense that they span an equivalent space for
any scattered node set. Later in the chapter, algorithms of how to compute in the near-flat RBF
limit will be discussed.

2 RBF-Generated Finite Difference (RBF-FD) Approximations

Before delving into differentiation, interpolation is discussed as it can be considered a zeroth-order
differentiation. RBF interpolation is based on a linear combination of translates of a single radially
symmetric function, �.kx � xkk/, that collocates the data ffkgNkD1 at the nodes fxkgNkD1 ; xk 2 R

d ,
and is given by

s.x/ D
NX

kD1
ck�.kx � xkk/; (1)
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where k � k denotes the `2 norm. The expansion coefficients, ck, can be found by inverting the
matrix, A, in (2):

2

66
6
4

�.jjx1 � x1jj/ �.jjx1 � x2jj/ � � � �.jjx1 � xN jj/
�.jjx2 � x1jj/ �.jjx2 � x2jj/ � � � �.jjx2 � xN jj/

:::
:::

: : :
:::

�.jjxN � x1jj/ �.jjxN � x2jj/ � � � �.jjxN � xN jj/

3

77
7
5

„ ƒ‚ …
Interpolation matrix A

2

66
6
4

c1
c2
:::

cN

3

77
7
5

D

2

66
6
4

f1
f2
:::

fN

3

77
7
5
: (2)

Since RBFs only depend on a scalar distance (defined by the `2 norm), the form of (2) is
independent of coordinate system, dimension, and domain geometry. As an example, even if node
locations on a sphere are given in spherical coordinates, no such grids need to be used. Distances
are measured straight through the sphere and not along great arcs. That is, the argument of the RBF
centered at, .x1; y1; z1/ and evaluated at .x2; y2; z2/ is

r D
p
.x2 � x1/2 C .y2 � y1/2 C .z2 � z1/2 D

q
2

�
1� xT2 x1

�

D
p
2 .1 � cos �2 cos �1 cos.�2 � �1/ � sin �2 sin �1/:

where �1;2, �1;2 are the respective latitude and longitude of the points.
The RBF differentiation matrix (DM), DN , is derived by applying the analytic derivative

operator L of the RBF interpolant and evaluating it at the desired node locations. As an example
on a sphere, to approximate L at .�; �/ D .�i ; �i/

Ls.�i ; �i / D
NX

kD1
ck ŒL�k.r/�j.�;�/D.�i ;�i /„ ƒ‚ …

Components of B

.i D 1; : : : ; N /

DBc

D �
BA�1� f

DDN f; (3)

where f contains the N discrete data values at the node locations and c contains the N discrete
expansion coefficients and is formally given by c D A�1f, where A�1 is the inverse of the RBF
interpolation matrix defined in (2).

The above derivation in (3) is for global RBF DM. That is, to calculate the discretized derivative
operator at one node, all the nodes in the domain are used. This is analogous to a spectral
collocation method. Thus, for smooth data and using infinitely smooth RBF, spectral convergence
can be expected. Deriving RBF-FD DMs is very similar, except that for each stencil, only n nodes
out of the N nodes in the domain are used. Similar to regular finite differences, as the stencil
size n increases so does the rate of algebraic convergence. Now, the differential operator L is
approximated at the node xc by a linear combination of the function values, uk , at the neighboring
n � 1 node locations, xk. In other words

Pn
kD1 akuk D Luc . The differentiation weights, ak , are

calculated by enforcing that this linear combination should be exact for RBFs, f�.kx � xkk/gnkD1,
centered at each of the node locations fxkgnkD1 (classical FD would enforce that it be exact for
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polynomials instead). It has also been shown through experience and studies (Fornberg et al.
2002; Wright and Fornberg 2006; Fornberg and Lehto 2011) that better accuracy is gained by
the interpolant being able to reproduce a constant. Hence, the constraint

Pn

kD1 ak D L1jxDxc D 0

is added. Combining these constraints, the solution for the RBF-FD weights can be determined
from the following linear system:

2

66
6
4

�.kx1 � x1k/ �.kx1 � x2k/ � � � �.kx1 � xnk/ 1
:::

: : :
:::

�.kxn � x1k/ �.kxn � x2k/ � � � �.kxn � xnk/ 1
1 1 � � � 1 0

3

77
7
5

2

66
6
4

a1
:::

an
anC1

3

77
7
5

D

2

66
6
4

L�.kx � x1k/jxDxc
:::

L�.kx � xnk/jxDxc

0

3

77
7
5
; (4)

where anC1 is not actually used in RBF-FD approximation after the system is solved. Solving this
system once gives one row of the RBF-FD DM. For a total of N nodes on the sphere, there will be
N linear systems of size .nC1/�.nC1/ to solve, resulting in a preprocessing cost of O(n3N ). Each
subsequent matrix-vector multiplication will then cost only O.nN/ operations. In high-resolution
computations, N � n, and thus, the cost to time step the RBF-FD method is O.nN/. This results
in a significant speedup from global RBFs that require O

�
N3

�
operations to create the DMs and

O
�
N2

�
to time step. In general, a kd-tree algorithm is used to find the n � 1 nearest neighbors

when calculating the differentiation weights for the stencils. MATLAB conveniently has a kd-tree
algorithm called “knnsearch” in its statistical toolbox. RBF-FD matrices are very sparse, generally
about 99% empty. Thus, in order to reduce the bandwidth of the matrix as well as index the entries
effectively in memory, a Cuthill–McKee algorithm is applied to the RBF-FD DM via the MATLAB
statement “symrcm.”

2.1 Limit of Flat Basis Functions
With " available as a free parameter, an obvious numerical test is to see how the choice of it
influences the accuracy that is obtained. A typical experiment is shown in Fig. 1. The error is
observed to be rapidly decreasing with " when the calculation suddenly breaks down due to
the ill conditioning of RBF-Direct – evaluation of (2) followed by (1). This may suggest that a
tradeoff will be required between accuracy and numerical conditioning (described as an uncertainty
principle in Schaback 1995). It was however realized shortly afterward that the RBF interpolation
problem itself actually does not become ill conditioned in the flat basis function limit (Driscoll
and Fornberg 2002; Fornberg et al. 2004). Instead, it is only the RBF-Direct algorithm that then
becomes an ill-conditioned numerical procedure for a problem that remains well conditioned.
Several well-conditioned numerical algorithms were subsequently developed. Using these, it was
soon found that RBF errors often become extremely low before leveling off or bouncing back up,
cf. Fig. 2. Sometimes, the most accurate "-range can be reached already with RBF-Direct, while at
other times it requires a stable algorithm (or more costly extended precision arithmetic).

If the nodes are latticelike, it can happen that the RBF interpolant diverges as " ! 0 (although
never in the GA case Schaback 2005). For node sets with some irregularity, the interpolant will in
the flat limit take the form of a multivariate polynomial (Driscoll and Fornberg 2002; Fornberg et al.
2004). One reason that " small often is better than " ! 0 is that, with RBF interpolants converging
to polynomials, the boundary accuracy often deteriorates (the polynomial Runge phenomenon).
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Fig. 1 (a) A set of 41 scattered nodes in the unit circle. (b) The error in max norm when the test function f .x; y/ D
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(Reproduced from Fornberg and Wright 2004)

Fig. 2 (a) Test function f .x/ D e
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, (b) n D 1;849 ME (minimal energy) nodes,
(c) Interpolation errors (in max norm) when using RBF-Direct vs. using the stable RBF-QR algorithm

2.2 The Ill Conditioning of the A-Matrix
Sideways translates of near-flat basis functions all look the same, and it is intuitively obvious
that they must form a very ill-conditioned base to expand in. Just how bad it is can readily be
quantified (Fornberg and Zuev 2007). For example, for scattered nodes in 2D, the eigenvalues of
the A-matrix form distinct groups, following the specific pattern

fO.1/g ; ˚
O

�
"2

�
; O

�
"2

��
;

˚
O

�
"4

�
; O

�
"4

�
; O

�
"4

��
;

˚
O

�
"6

�
; O

�
"6

�
; O

�
"6

�
; O

�
"6

��
; : : :

(5)
until the last eigenvalue is reached (causing the last group to possibly contain fewer eigenvalues
than the general pattern would suggest). Different choices of scattered node locations or of RBF
types (IQ, MQ, or GA) make no difference in this regard; lattice-based nodes or Bessel-type RBFs
form exceptions. More concisely, the eigenvalue pattern above can be written as

1; 2; 3; 4; 5; 6; : : : ; (6)

indicating how many eigenvalues there are of orders "0; "2; "4; "6; "8; "10; etc. Table 2 shows
some more of such sequences. Given these patterns, one can immediately calculate the orders of
both cond.A/ and det.A/ D Qn

kD1 �k as functions of n. For the examples in Figs. 1 and 2, cond.A/
becomes equal to O

�
"�16� and O

�
"�84�, respectively.
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Table 2 Numbers of eigenvalues of different sizes (powers of ") for different geometries

Power of " =
Geometry 0 2 4 6 8 10 12 14 . . .

1D nonperiodic 1 1 1 1 1 1 1 1 . . .
1D on circle periphery 1 2 2 2 2 2 2 2 . . .
2D nonperiodic 1 2 3 4 5 6 7 8 . . .
2D on spherical surface 1 3 5 7 9 11 13 15 . . .
3D nonperiodic 1 3 6 10 15 21 28 36 . . .

2.3 Overview of Some Computational Options
In cases when RBF-Direct is too ill conditioned, the most straightforward approach is to resort
to extended precision arithmetic. The only drawback is that the cost usually becomes excessive.
Given the results quoted in the previous section, one can readily determine in advance just how
many digits of precision would be needed as function of n and " in various geometrical settings.

Some types of preconditionings and SVD enhancements have been suggested for the RBF-
Direct approach. While preconditioning can speed up certain iterative procedures, cf. Chapter 34
in Fasshauer (2007), they do not address the issue that significant information becomes lost already
when the coefficient matrix A is formed (with all its entries virtually the same when " is small).
Recovery of such missing information is challenging or impossible.

Stable algorithms use computational steps that remain numerically well conditioned all the
way into the " ! 0 limit (and therefore require only standard double precision arithmetic, no
matter how small " is). So far, two main classes of stable algorithms have been proposed. The
first realizations of these were denoted Contour-Padé (Fornberg and Wright 2004) and RBF-QR
(Fornberg and Piret 2007), respectively. Related to the latter is the recent RBF-GA algorithm
(Fornberg et al. 2013).

2.3.1 The Contour-Padé Algorithm

Although " is a real-valued quantity, nothing stops us from considering it also for complex values.
Focusing on the GA case, it can be shown that the interpolant s.x; "/, for any fixed evaluation point
x, then becomes a meromorphic function of " (i.e., with poles as its only singularities across the
finite complex "-plane). Furthermore, it is known that s.x; 0/ is finite even as " ! 0. The origin
" D 0 must therefore be a removable singularity of s.x; "/, i.e., there is no actual singularity in the
flat basis function limit as far as the RBF interpolant is concerned. The Contour-Padé algorithm
is based on Cauchy’s integral theorem, allowing the evaluation of an analytic function at a point
(such as " D 0) using an integration path that does not need to come close to it. The path can thus
follow such a large circle in the "-plane that RBF-Direct can safely be used along it.

2.3.2 The RBF-QR Algorithm

As noted above, translates of near-flat RBFs form a basis that is ill suited for immediate numerical
use. This naturally raises the question whether the underlying approximation space also is bad, or
if all conditioning issues can be resolved by just finding an alternate good basis in exactly the same
space. This latter case turns out to hold true, leading to the follow-up issue of how one can carry
out the basis conversion by analytic means also in scattered node cases, i.e., so that no numerical
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cancelations will arise in the process. The RBF-QR method offers a systematic approach for this,
first implemented for nodes on the surface of a sphere (Fornberg and Piret 2007) and more recently
for node sets in 1D, 2D, and 3D (however then limited to GA RBFs Fornberg et al. 2011).

2.3.3 The RBF-GA Algorithm

The RBF-QR algorithm involves extensive manipulations of Taylor expansions. While these can
be truncated as needed, the RBF-GA algorithm utilizes that exact remainders can be expressed
as incomplete gamma functions. This leads to a stable algorithm that is free from both infinite
expansions and inexact truncations. It applies to GA RBFs in any number of dimensions and is
presently the fastest stable option available (at around 10 times the cost of RBF-Direct). Although
it may be slightly less accurate than RBF-QR in some cases (such as for large latticelike node sets),
it is nevertheless well suited for generating RBF-FD approximations.

2.4 Time Stabilization: Hyperviscosity
Stability issues for RBF-FD emanate from the fact that the natural intrinsic irregularity of the
RBF-FD stencils causes eigenvalues of the DM to scatter into the right half of the complex plane.
This becomes a hurdle to the RBF-FD method when (1) solving naturally dissipation-free PDEs,
such that even a very mild numerical scatter of the eigenvalues into the right half complex plane
can cause severe instability, and (2) using large RBF-FD stencils, since as the stencil size increases
so does the scatter of eigenvalues. This latter point is even an issue for systems with dissipation, in
which case the scatter might be too large for the natural dissipation to control.

Stabilization of the RBF-FD method is achieved by applying a hyperviscosity filter, which is
a high-order Laplacian �k; k 2 N > 1, to the right-hand side (RHS) of the system of PDEs
being solved. Since the stencils for the hyperviscosity are same size as those used in discretizing
the spatial operators and are simply added to the RHS, there is no additional cost per time step

(Fornberg and Lehto 2011; Flyer et al. 2012). If GA RBFs
�
�.r/ D e�."r/2

�
are used for creating

the hyperviscosity stencils, the values for �k�.r/ are available explicitly, thanks to the relation

�k�.r/ D "2kpk.r/�.r/: (7)

Here, k is the order of the Laplacian, and pk.r/ are multiples of generalized Laguerre polynomials
that are generated recursively (see Section 3.2, Fornberg and Lehto 2011). A 2D Laplacian operator
is assumed when working on the surface of the sphere since a local stencil can be viewed as planar.

Applying hyperviscosity leaves the physically relevant eigenvalues largely intact but shifts all
the spurious ones of the PDE system to the left half of the complex plane. This shift is controlled
by k, the order of the Laplacian, and a scaling parameter �c, defined by

H D ��k D �cN
�k�k:

where N is the total number of nodes in the domain. Given a choice of N , n, and ", it was found
experimentally that �c ranging from O.1/ to O

�
10�2� provides stability with good accuracy for

PDEs with convective operators (Flyer et al. 2012). In general, the larger the stencil size, the
higher the order of the Laplacian. This is attributed to the fact that as the stencil size n increases,
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the accuracy of the RBF-FD method increases; that is, a wider range of physical modes represented
accurately. As a result, the hyperviscosity operator should preserve as much of that range as
possible; as k increases, more physical modes are preserved correctly.

3 Implicit (Compact) RBF-FD Approximations

Since a derivative is a “local” property of a function, there is something intuitively contradictory
about enhancing the order of a FD approximation by invoking data located increasingly far
away. When the task is to solve a PDE (rather than just to approximate an operator), compact
approximations offer a different opportunity for improving the order of accuracy. For finite
differences, the concept has a long history (Fox 1947; Collatz 1960) with several more recent
enhancements available (such as to nonlinear PDEs in 2D and 3D, etc., Gupta 1991; Lele 1992;
Li et al. 1995; Zhai et al. 2013).

Before considering compact approximations in scattered node RBF-FD cases, the basic idea is
illustrated in the case of approximating �u D @2u

@x2
C @2u

@y2
on a 2D lattice, with spacing h in each

direction. The most obvious FD approximation can be written as

2

4
1

1 �4 1
1

3

5 u=h2 D �u CO
�
h2

�
: (8)

Using only a 3 � 3 stencil size, it is impossible to find weights that improve the accuracy above
second order. Extending the stencil to 5 weights in both directions permits fourth order, but causes
problems when solving the PDE �u D f :

• The center weight becomes smaller in magnitude than the sum of magnitudes of the remaining
weights, i.e., diagonal dominance is lost. This damages the convergence rate of many iterative
schemes, and it also opens up the possibility of system singularities.

• Wider stencils need more boundary information than what is readily available.

Another way to approximate�u is given by

2

4
1 4 1

4 �20 4
1 4 1

3

5 u=
�
6h2

� D �u CO.h2/ ; (9)

with no immediately obvious advantage over (8). However, Taylor expansions will reveal that, for
solving �u D f ,

2

4
1 4 1

4 �20 4
1 4 1

3

5 u=
�
6h2

� D
2

4
1

1 8 1

1

3

5 f=12CO.h4/;

and for solving �u D 0,
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2

4
1 4 1

4 �20 4
1 4 1

3

5 u=
�
6h2

� D 0CO.h6/ :

The latter two approximations suffer neither of the problems noted above but achieve nevertheless
significantly improved levels of accuracy.

The weights ai in “regular” RBF-FD approximations of a linear operator L at a node x1 are
obtained by requiring that LujxDx1 D Pn

iD1 aiui is exact for all the RBFs � .jjx � xi jj/, leading
to an n � n linear system for the weights (system represented in (4) without column and row of
ones). For compact RBF-FD approximations, first described in Wright and Fornberg (2006), we
again consider a RBF-FD stencil centered at x1, with further nodes x2; : : : ; xn; and then repeat
m � n�1 of the latter ones: x	1; : : : ; x	m:Wishing to solveLu D f , we extend the basis function

set to also include L�
�
jjx � x	j jj

�
and require LujxDx1 D Pn

iD1 aiujxDxi C Pm
jD1 bjLujxDx	j

to hold for them all. This leads to a .n C m/ � .n C m/ linear system for the weights ai and bj .
With LujxDx1 D f1, ujxDxi D ui and LujxDx	j D f	j , we have thus arrived at the desired compact
RBF-FD formula (sometimes denoted RBF-HFD for being based on a Hermite-type interpolation).
The usual enhancement of also enforcing exact results for u.x/ � 1 together with the constraintPn

iD1 �i D 0 is again beneficial for accuracy and is readily incorporated. The resulting .nCmC1/
� .nCmC 1/ linear system will again generally be positive definite.

The advantages noted above for compact formulas in the FD case carry directly over to the
scattered node RBF-FD case. Several test examples and further discussions are provided in Wright
and Fornberg (2006).

4 Applications on the Surface of Spheres and Spheroids

4.1 Cartesian Form of Surface Differential Operators
Spherical coordinates are well known to suffer from the “pole problem.” When expressing PDEs
in this coordinate system, this problem is exacerbated by the fact that directional velocity vector
components in the lateral direction u (latitudinal) and v (longitudinal) will inherently carry pole
singularities in their solution since the unit vectors O� and O� are singular at the poles. Similar
issues occur when representing more general surfaces in surface-based (or intrinsic) coordinate
systems, such as oblate or prolate spheroidal coordinates. If, however, a Cartesian coordinate
system is used, these singularities can be completely avoided. This section describes how to express
common surface differential operators in Cartesian form. The discussion below is for general two-
dimensional surfaces embedded in three-dimensional space, with some specific comments on the
sphere and spheroids toward the end. These Cartesian-based operators are completely natural
to apply an RBF expansion since the radial functions are free of any surface-based coordinate
systems.

Let x D .x; y; z/ be a point on the target surface and n D .nx; ny; nz/ denote the unit normal
vector to the surface at x. If u D .u; v;w/ is a vector expressed in Cartesian coordinates and is
placed at .x; y; z/, then nnT u gives the projection of u onto the normal to the surface, and u�nnT u
gives the projection of u onto the plane tangent to the surface at .x; y; z/. This projection operation
can be expressed using the following projection matrix:
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Table 3 Common surface differential operators expressed in Cartesian coordinates. The projection matrix P is defined

in (10) and r is the standard Cartesian-based gradient, i.e., r D @xOi C @y Oj C @z Ok
Surface differential operator Expression in Cartesian coordinates

Gradient of a scalar h Prh D
2

4
.px � r/h
.py � r/h
.pz � r/h

3

5

Divergence of a vector u D .u; v;w/ .Pr/ � u D .px � r/u C .py � r/v C .pz � r/w

Curl of a vector u D .u; v;w/ .Pr/ � u D
2

4
.py � r/w � .pz � r/v
.pz � r/u � .px � r/w
.px � r/v � .py � r/u

3

5

Laplace-Beltrami of scalar h .Pr/ � .Prh/ D .px � r/.px � r/hC .py � r/.py � r/hC .pz � r/.pz � r/h

P D I � nnT D
2

4
.1 � nxnx/ �nxny �nxnz

�nxny
�
1 � nyny

� �nynz

�nxnz �nynz .1� nznz/

3

5 D
2

4
pTx
pTy
pTz

3

5 ; (10)

where I is the 3-by-3 identity matrix. Here px; py; and pz represent the projection operators in the
x; y, and z directions, respectively. This projection operator can be combined with the standard
Cartesian-based gradient operator r to define a variety of surface differential operators in Cartesian
coordinates. Table 3 summarizes these results.

In the case of the unit sphere, the normal vector n at a point x D .x; y; z/ on the sphere is just x.
In this case, the projection operator simplifies to

P D I � xxT D
2

4
.1 � x2/ �xy �xz

�xy .1 � y2/ �yz
�xz �yz .1 � z2/

3

5 : (11)

For a spheroid defined by

x2 C y2

a2
C z2

c2
D 1; (12)

the unit normal vectors are given by

n D .nx; ny; nz/ D
�
2x

a2

;
2y

a2

;
2z

c2


�
; (13)

where 
 D p
.x2 C y2/ =a4 C z2=c4.

4.2 Nonlinear Shallow Water Equations on a Sphere
The shallow water equations describe the nonlinear flow of an incompressible fluid. They represent
the 2D atmospheric flow conditions in a single hydrostatic atmospheric layer and are therefore
considered an idealized test bed for the horizontal dynamics (known as the dynamical core) of all
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3D climate model developments. The equations address the majority of the modeling challenges
associated with the temporal and horizontal discretization techniques in spherical geometry.

Using the notation from Table 3, the shallow water equations on the surface of the unit sphere
in Cartesian coordinates are given by

@u

@t
D � px �

2

4
.u � Pr/u C f .x � u/ � Oi C g.px � r/h
.u � Pr/v C f .x � u/ � Oj C g.py � r/h
.u � Pr/w C f .x � u/ � Ok C g.pz � r/h

3

5

„ ƒ‚ …
RHS

; (14a)

@v

@t
D � py � RHS; (14b)

@w

@t
D � pz � RHS; (14c)

@h

@t
D � .Pr/ � .hu/ : (14d)

where P is the projection operator, given in (11), and confines the flow to the sphere, f is the
Coriolis force, u D uOi C vOj C w Ok is the velocity vector, x represents the position vector, and h is
the geopotential height. Notice that the only spatial operator that needs to be discretized are the
components of the surface gradient .px � r/; .py � r/; .pz � r/. These operators are used as L in (4)
to generate RBF-FD approximations in the numerical test cases that follow.

4.2.1 Flow Over an Isolated Mountain

This test case describes flow over a single isolated mountain, which is achieved by adding a forcing
term hmtn to the right-hand side of the geopotential height h equation in (14d). The standard
undifferentiable C0 mountain is given by

hmtn D hmax.1 � d=R/ (15)

where hmax D 2;000m, R D �=9, and d2 D min
	
R2; .�� �c/2 C .� � �c/2



with .�c D

30ıN; �c D �90ıW/ being the center of the mountain. To differentiate between errors due to a
non-smooth forcing, which causes Gibbs phenomena in any high-order method, and those inherent
in the RBF-FD method, the results for convergence and accuracy are compared against test runs
that use an exceptionally steep C1 Gaussian profile given by

h.�; �/ D hmaxe
�.2:8 dR /

2

; (16)
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where hmax; d , and R are the same as for the cone mountain. The initial conditions are given by

h D h0 � 1

g

�
a�u0 C u20

2

�
z2; u D u0f�y; x; 0g; (17)

where h0 D 5;400m (mean reference height), g D 9:80616m, u0 D 20m/s, a D 6;371;220m
(mean radius of the earth), and � D 7:292.10/�5 s�1 (rotation rate of the earth). The simulation is
run for 15 days using the standard RK4 time-stepping scheme.

The left column of Fig. 3 shows the profile of the conical mountain, the solution in h at day 15
and the magnitude of the error between the RBF-FD solution for N D 25;600, n D 31, and the
discontinuous Galerkin (DG) reference solution. The same holds for the right column but with the
Gaussian mountain profile. With the solutions looking identically the same, the key difference to
notice is that even though the C1 Gaussian mountain is slightly steeper than the C0 mountain, no
Gibbs phenomena is observed in the former. With theC0 mountain, there are high-frequency waves
emanating throughout the domain (i.e., Gibb’s phenomena), illustrating the sensitivity of high-
order methods to non-smooth forcing. Another consequence is that the accuracy of the RBF-FD
method does not indefinitely increase with stencil size n, as shown in the bottom left panel of
Fig. 3. After n D 31, stencil size has no bearing on accuracy when a non-smooth mountain forcing
is present. Hence, this is the stencil size chosen for this test case. In contrast, the bottom right panel
of Fig. 3 demonstrates how the accuracy of the RBF-FD method for a C1 solution does increase
as n increases, that is, as the derivative approximations become more global. However, even with a
smooth forcing, the rate of convergence is not much greater than for the cone case, since both the
Gaussian and cone mountains are so steep, leading to underresolution even for very large nodes
sets. To overcome this, adaptive node refinement in the area of the mountain needs to be used, as
was done in St-Cyr et al. (2008).

Next the performance of the RBF-FD method is compared not only against itself but also against
a discontinuous Galerkin (DG) and spherical harmonic (SH) models.

1. DG: The DG model (Blaise and St-Cyr 2012) is in 3D Cartesian coordinates, with flows
being tangentially constrained to the sphere by adding a Lagrange multiplier to the system
of equations. The simulations used as references herein have been performed on a cubed sphere
grid made up of 6,144 elements. Each element contains 12 � 12 Legendre quadrature nodes to
represent the solution, which results in a total of 884;736 degrees of freedom and an average
resolution around 26 km. For computing these reference solutions, no dissipation mechanism
was found to be needed. However, for the run time versus error computations in Fig. 5, the
two-dimensional exponential filter described in Hesthaven et al. (2007) was applied.

2. SH: The SH model from the DWD (Deutscher Wetterdienst, German National Weather Service,
see http://icon.enes.org/) is an updated derivative of the NCAR spectral transform model. It is
implemented with de-aliasing, using Orszag’s 2/3 rule (Gottlieb and Orszag 1977) and has
become the standard reference solution in the community. For the flow over a mountain test, it
has a spectral truncation of T426, that is, it uses 182,329 spherical harmonic bases.

3. RBF-FD: A high-resolution RBF-FD model is also used as a reference, based on N D 163;824

icosahedral-type nodes on the sphere, representing a 60 km resolution. It uses a stencil size of
n D 31.
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Fig. 3 Left column – cone mountain results: (1) profile of mountain; (2) RBF-FD solution for h at day 15,N D 25;600,
and n D 31 with contour intervals at 50 m; (3) magnitude in the error between the RBF-FD solution and DG reference
solution; and (4) `2 error as function of the resolution N for varying stencil sizes. Right column, same as left but for
the Gaussian mountain forcing. Dashed circle in all plots is the base of the mountain

The left panel of Fig. 4 shows that the normalized `2 error is an order of magnitude larger
when the DWD-SH reference solution is used, as opposed to DG or the RBF-FD (N D 163;842)
reference solutions. Furthermore, when these latter reference solutions are used, the normalized `2
errors are almost identical (notice the 	 overlay the �). This same trend is also seen in the right
panel of Fig. 4 with global RBFs, a different approach than both RBF-FD and DG that does not
require hyperviscosity. Given that DG, RBF-FD, and global RBFs are vastly different numerical
methods, this strongly indicates that the DWD-SH T426 spectral simulation is providing a less
accurate solution. This is further supported by the few articles that do report `2 errors for this test
case (Taylor et al. 1997; Spotz et al. 1998; St-Cyr et al. 2008), all of which use either the NCAR or
DWD-SH reference solution and obtain errors on the order of 10�4, an order of magnitude larger
than that obtained by DG or RBF-FD.

Next, time benchmarking is considered with comparison against the DG model. Benchmarking
was done on a MacBook Pro laptop with an Intel i7 2.2 GHz quad-core processor, using only a
single core and 8 GB of memory. The RBF-FD code was written in MATLAB and the DG code in
C++. The RBF-FD reference solution of N D 163;842 and n D 31 (i.e., 60 km resolution) was
used for calculating the `2 error versus runtime (i.e., wall-clock time) for both methods in Fig. 5.
The RBF-FD resolutions with corresponding time steps is given in Table 4. The RBF-FD method
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Fig. 4 The normalized `2 error in the height field h as a function of N for flow over a conical mountain at day 15 for
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Fig. 5 The error as a function of runtime (defined by wall-clock time) for the flow over the cone mountain test case

Table 4 Time steps used for the cone mountain case with respective spatial resolutions for the maximal determinant
(MD) nodes based on the mesh norm, maxx2S2 min1�i�N dist.x; xi / (see Womersley and Sloan 2003/2007 for
discussion and tabulation)

N Resolution (km) Node type �t (min)

4;096 550

MD

20

6;400 420 15

12;100 330 12

25;600 220 5

40;962 120
ICO

3

163;842 60 1
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was computationally faster than the DG method, from about an order and a half of magnitude for
coarser resolutions to four times faster for the finest resolutions.

4.2.2 Evolution of a Highly Nonlinear Wave

This test case describes the evolution of a highly nonlinear wave with rapid energy transfer from
large to small scales over a short time period. First, high-frequency gravity waves propagate around
the sphere followed by complex vortex formations with sharp gradients. The details of how to set
up the test can be found in Galewsky et al. (2004) and Flyer et al. (2012). The background flow
is only a function of latitude, represented by an exponential profile that is zero everywhere except
in the latitudinal band �=7 � � � 5�=14. To generate the instability, the height (pressure) field is
perturbed by Gaussians, in longitude and latitude, multiplied by a cosine to force the perturbation
to go to zero at the poles � D ˙�=2. The test case is run for 6 days.

There are two main concerns with this test case: (a) how well the sharp gradients are resolved and
(b) the effect of Gibbs phenomena. For short time integration periods, as here, these two numerical
issues become a balancing act. As both the solutionN and order of the method n are increased, the
gradients are resolved better. However, as with classical FD, the higher the order of the method,
i.e., larger n, the more prominent the Gibbs phenomena. Here with N D 25;000, n D 101 would
correspond approximately to a ninth-order method. Notice in Fig. 6, when an n D 101 stencil size
is used, the contour lines are more jagged with evidence of of Gibbs phenomena. Yet, the gradients
and vortices are much better defined than for n D 31, roughly analogous to a fifth–sixth-order
method. It this latter case, the features appear smoothed out and underdeveloped. Increasing the
resolution N and keeping n D 31 fixed gives the best results as seen in Fig. 7 for N D 163;842

(60 km or 0:54ı � 0:54ı). The solution is extremely similar to that given by the high-order DG
solution with a resolution of 39 km or 0:35ı � 0:35ı. Due to its high accuracy in approximating
derivatives, the RBF-FD method is able to produce the basic wave pattern structure even at very
coarse resolutions such as N D 4;096 (5ı � 5ı), displayed in Fig. 8. This is not the case with
the DG method (a slightly higher resolution of 3ı � 3ı is displayed in the third panel of Fig. 8),
a spectral element method (SE), or a finite volume method (FV). At such coarse resolutions, the
DG and SE (St-Cyr et al. 2008) methods instead produce features of the grid such as an artificial
wavenumber-four pattern for the cubed sphere. The FV method, notorious for being dissipative,
shows no spatial structures at a resolution of 5ı � 5ı in Fig. 8.

4.3 Reaction-Diffusion Equations on Spheroids
While the sphere plays a prominent role in several applications from geoscience, it is often
a physical idealization. In some cases, spheroidal domains (oblate or prolate) may be more
physically relevant. Unfortunately, many numerical techniques that work well for the sphere can
be considerably more difficult in spheroidal domains (e.g., going from spherical harmonics to
oblate/prolate spheroidal harmonics). Since RBFs are free of any surface-based coordinate system,
they do not suffer from these complications. This fundamental feature is illustrated in this section
by considering the problem of simulating certain reaction-diffusion equations on the sphere, an
oblate spheroid, and a prolate spheroid using the RBF-FD method. These types of equations and
these domains have a number of applications in biology and chemistry to model such things
as diffusion of chemicals on biological cells or membranes, pattern formations in biology, and
nonlinear chemical oscillators in excitable media. While the discussion below is for the surface of
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Fig. 6 The relative vorticity at day 6 for the evolution of the highly unstable wave case as function of resolution N
and stencil size n. Contour interval is 2 � 10�5 s�1

Fig. 7 Top: RBF-FD solution for N D 163;842 and n D 31. Bottom: DG solution at 39 km resolution
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Fig. 8 The relative vorticity at day 6 for the evolution of the highly unstable wave case with resolution of 5ı �5ı for a
spectral element model (SEM), finite volume model (FV) (St-Cyr et al. 2008), and the RBF-FD model. The DG model
is approximately a resolution of 3ı � 3ı. R2 corresponds to 16 elements per face of the cubed sphere for a total of 96
elements, while N6 corresponds using 6�6 D 36 Legendre quadrature nodes. In the SEM model, ne D 3 corresponds
to 3 � 3 D 9 elements per face of the cubed sphere. In each element 8 � 8 Gauss–Legendre–Lobatto nodes are used
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a spheroid defined by (12), it may be possible to generalize it to more general (closed) surfaces, as
has been done for the global RBF method in Piret (2012) and Fuselier and Wright (2013).

In the case of two species u and v, the prototypical form of reaction–diffusion equations on a
spheroid (or more general surface) can be written as

@u

@t
Dıu�Su C fu.t; u; v/;

@v

@t
Dıv�Sv C fv.t; u; v/;

(18)

where ıu; ıv 
 0, fu; fv are typically nonlinear scalar functions describing reactions of the species
and �S is the Laplace–Beltrami operator for the spheroid (or surface). As mentioned above,
this operator can be difficult to treat numerically if using surface-based coordinate systems (i.e.,
oblate/prolate spheroidal coordinates) as they will induce an artificial coordinate singularity (e.g.,
at the poles). As in the case of the shallow water wave equations, Cartesian coordinates will thus be
used to avoid these singularities. For (18), this means expressing �S using the formulation given
in the last row of Table 3.

In the case of a sphere, the direct discretization of �S using RBFs is incredibly simple (as first
discussed in Wright et al. 2010 and employed below in Sect. 5.2). Unfortunately when switching to
a more general spheroid, this simplicity is lost. The discretization approach taken in Fuselier and
Wright (2013) is therefore adopted here. In this approach, N “scattered” nodes are first distributed
on the surface of the spheroid. Each of the components of the surface gradient listed in the top row
of Table 3 is then approximated with the RBF-FD method using the projection matrix P defined
by the unit normal vectors in (13). Finally, the DM for the surface Laplacian is constructed like
the continuous formulation listed in the last row of Table 3 but using the RBF-FD DMs for each
component of the surface gradient instead of the continuous ones (see Fuselier and Wright 2013
for full details).

Based on numerical experiments, one small modification to the RBF-FD method described
in Sect. 2 is suggested for the above procedure on the spheroid. Instead of computing the
distance from node xj to xk using the standard Euclidean distance, a weighted Euclidean distance
defined as

kxj � xkk2S D .xj � xk/2 C .yj � yk/2
a2

C .zj � zk/2

c2

should be used, where a and c define the parameters of the spheroid in (12). Although the
results are not presented here due to space limitations, this was observed to give more accurate
approximations of the surface Laplacian. It should be noted that this modification does not alter the
non-singularity results of the linear systems involved in computing the RBF-FD formulas discussed
in Sect. 2.

4.3.1 Turing Patterns

Since Turing’s classical paper Turing (1952) that suggested how certain nonlinear models of
reaction and diffusion can lead to stable, heterogeneous pattern formations, there has been an
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explosion of research in reaction–diffusion-type models for various kinds of morphogenesis.
The following is one such model that has been studied on spherical domains (Varea et al. 1999):

@u

@t
Dıu�Su C ˛u

�
1 � 1v2

� C v.1 � 2u/;
@v

@t
Dıv�Sv C ˇv

�
1C ˛1

ˇ
uv

�
C u.� C 2v/:

(19)

Here u and v are morphogens with u the “activator” and v is the “inhibitor.” If ˛ D �� then
.u; v/ D .0; 0/ is a unique equilibrium point of this system. By changing the diffusivity rates
of u and v, an instability can form that leads to different pattern formations. The cubic coupling
parameter 1 favors the formation of stripes, while the quadratic coupling parameter 2 favors the
formation spots. The spot pattern formations are more robust than stripes and take far less time to
reach “steady state.”

The RBF-FD method was applied to numerically solving (19) on three surfaces: an oblate
spheroid defined by (12) with a D 1 and c D 0:5, a prolate spheroid with a D 1 and c D 1:5,
and the unit sphere (i.e., a D c D 1). The surfaces were discretized using a radial projection
of a set of N spherical MD nodes to the surface. In all experiments, N D 16;384 and n D 31

for the RBF-FD approximations of the surface Laplacian. The equations were advanced in time
using the third-order, semi-implicit, backward differentiation formulae (SBDF3) method (Ascher
et al. 1995). This scheme treats the diffusion terms implicitly and the (nonlinear) reaction terms
explicitly. The implicit systems were solved using the (unpreconditioned) BiCGSTAB iterative
method (van der Vorst 1992) with a tolerance of 10�8 on the relative residual. A time step of
�t D 0:05 was used, which was near the largest that could be used and still maintain time stability
due to the non linear reaction terms. Throughout the simulations, the largest number of BiCGSTAB
iterations required to solve the implicit systems was 5. Similar to the experiments in Varea et al.
(1999), we set the initial values of u and v to random values between �0:5 and 0:5 in a thin strip
around the “equator” of each surface and u D v D 0 elsewhere.

Figure 9 shows the results from the simulations using parameters that lead to both spot and stripe
patterns. These parameter values were motivated by those used in Varea et al. (1999). For the spot
patterns, the parameters ˛ D 0:899, ˇ D �0:91, � D �0:899, 1 D 0:02, and 2 D 0:2 were
used for all the surfaces. The diffusion values were set as ıu D 0:516ıv, with ıv D 2:25 � 10�3 for
the oblate spheroid, for ıv D 3 � 10�3 for the sphere, and ıv D 4:5 � 10�3 for the prolate spheroid.
For the stripe patterns, 1 D 3:5 and 2 D 0, with ˛, ˇ, and � , set the same as the spots for all
the surfaces. The diffusion values were set as ıu D 0:516ıv, with ıv D 1:575 � 10�3 for the oblate
spheroid, for ıv D 2:1 � 10�3 for the sphere, and ıv D 3:15 � 10�3 for the prolate spheroid.

While the initial conditions used in these simulations are random, the resulting spot and stripe
patterns observed in Fig. 9 are qualitatively similar to those obtained from the global RBF method
from Fuselier and Wright (2013). This new RBF-FD method is significantly more computationally
efficient since iterative methods can be used to successfully solve the implicit linear systems from
the time-stepping scheme as opposed to direct methods used in Fuselier and Wright (2013). This
also allows much higher resolutions to be used in the simulations.
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Fig. 9 Turing spot and stripe patterns computed from the model (19) on an (a) oblate spheroid, (b) sphere, and
(c) prolate spheroid. The pseudocolor plots are for the activator u once steady state is reached. In all plots, black
corresponds to a high concentration of u, and white to a low concentration. For all simulations, N D 16;384 and
n D 31, with a time step of �t D 0:05. All simulations were run until a steady-state solution was reached, which was
about 800 time steps for the spot patterns and 6,000 for the strip patterns

5 3D Applications in a Spherical Shell

5.1 Global Electric Circuit
Electrical linkages within the atmosphere are often discussed in terms of a “global electric circuit”
(GEC). The GEC extends from the Earth’s surface to the base of the ionosphere defined to be
90 km altitude. The basic idea, first postulated by Wilson (1920, 1929), is that thunderclouds
and other highly electrified clouds produce an upward current (�1,000–2,000 A) that maintains
the ionosphere at a quasi-static potential on the order 240 ˙ 40 kV with respect to the ground.
A downward return current density of 1–10pAm�2 is distributed over the rest of the globe in the
so-called “fair weather regions” (no cloud activity).

The quasi-static coupled atmospheric and ionospheric components of the GEC can be modeled
as an elliptical Poisson-type PDE

r � .	rˆ/ D Js.Ex/; Ex 2 �; (20)

with suitable boundary conditions. Here,ˆ is the electrostatic potential,� is the atmosphere below
the ionosphere, and 	 is the atmospheric conductivity. The right-hand side, Js, is a representation
of the current sources (e.g., thunderstorms) in the domain. The conductivity of the atmosphere is
	 , and to a good first approximation, it can be considered simply as a function of altitude. Below,
it is even further simplified by taking it to be a constant, thus resulting in Poisson’s equation.
This allows for a simple direct comparison between explicit RBF-FD stencil implementation to an
implicit (compact) RBF-FD one in 3D spherical geometry, with the focus being on accuracy and
convergence of a Krylov iterative solver (BiCGSTAB van der Vorst 1992 in this case).
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Fig. 10 Schematic picture of the two types of stencils. Left panel: explicit stencil. Right panel: implicit stencil

5.1.1 Poisson’s Equation

Consider Poisson’s equation with homogeneous Dirichlet conditions, given by

�u D f; x 2 �; (21)

u D 0; x 2 @�; (22)

where � is a spherical shell with inner radius Ri D 2 and outer radius Ro D 4. The right-hand
side is chosen such that the exact solution is given by

uexact.r; �; '/ D sin

�
2�

r � ri

r0 � ri
�
Y9;3.�; '/; (23)

where Yl;m.�; '/ denotes a spherical harmonic of degree l and order m.
Two discretizations are considered, based on RBF-FD. The first is an explicit scheme, where

the angular terms of the Laplacian in (21) are implemented using 31-point RBF-FD stencils on
scattered nodes and the radial terms are discretized using 5-point RBF-FD stencils on equidistant
nodes. The second scheme is implicit, based on the methodology in Wright and Fornberg (2006)
and discussed in Sect. 3. For the angular terms in the Laplacian, fn D 9;m D 6g node stencils are
applied, while fn D 3;m D 2g nodes are used in the radial discretization. Maximum determinant
nodes (MD), see Womersley and Sloan (2003/2007), are used in the angular discretization for
both stencil types. A typical stencil of each kind is shown in Fig. 10. The sparsity pattern of the
Laplacian DM for each method, following a reverse Cuthill–McKee reordering of the entries, is
shown in Fig. 11. The horizontal resolution is given by NH , and the radial one by NR. The total
number of nodes is denoted N D NH �NR.

The linear system arising from the discretization is solved using BiCGSTAB with zero-fill
modified incomplete LU factorization as a preconditioner. A residual tolerance of 10�8 is used in
the iterative solver. The subplots in Fig. 12 show the relative `2 error and the number of iterations
required, respectively, as a function of the total number of nodes. While both methods achieve
fourth-order convergence, the implicit method is more efficient in terms of memory and number of
iterations required to converge.

Table 5 gives the exact specifications of the six node sets used for the results in Fig. 12.
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Fig. 11 The sparsity pattern for NH D 2;500, NR D 11. (a) Explicit stencil. (b) Implicit stencil

R
el

at
iv

e
2

er
ro

r

Explicit
Implicit

(h4)

104

a b

101

102

103

105 106

N
104

10–6

10–5

10–4

10–3

10–2

105

Error Iterations

106

N

B
iC

G
S

TA
B

ite
ra

tio
ns

Explicit
Implicit

Fig. 12 The error and the number of iterations as a function of N . (a) Error. (b) Iterations

5.2 Mantle Convection
Thermal convection of an incompressible, Boussinesq fluid at infinite Prandtl number in a spherical
shell that is heated from below is discussed here. This can be considered as a simplified version of
mantle convection with constant viscosity. The dynamics of the fluid are governed by the Rayleigh
number, Ra, which can be interpreted as a ratio of the destabilizing force due to the buoyancy of the
heated fluid to the stabilizing force due to the viscosity of the fluid. Since the fluid is incompressible
and isoviscous, the velocity can be expressed solely in terms of a poloidal potential, u D r � r �
..ˆr/Or/ (see, e.g., Chandrasekhar 1981; Backus 1966). Exploiting this relationship, the governing
equations for a shell of inner radius Ri and outer radius Ro can be written as

�S�C @

@r

�
r2
@�

@r

�
D Ra r T; (24)

�SˆC @

@r

�
r2
@ˆ

@r

�
D r2�; (25)
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Table 5 The specifications for the results shown in Fig. 12

Stencil type NR NH "R "H `2 error Iterations

Explicit

11 2;500

0.5 5

0:00129 24:5

15 4;900 0:000330 35:5

19 8;100 0:000106 47:5

23 12;100 4:09 � 10�5 65:5

27 16;900 1:84 � 10�5 98:5

33 25;600 6:73 � 10�6 624:5

Implicit

11 2;500

0.5 4

0:000930 12

15 4;900 0:000221 16:5

19 8;100 7:68 � 10�5 23:5

23 12;100 3:39 � 10�5 25:5

27 16;900 1:79 � 10�5 32

33 25;600 7:87 � 10�6 34:5

@T

@t
D �

�
ur
@T

@r
C u�

1

r

@T

@�
C u�

1

r cos �

@T

@�

�
C 1

r2
�ST C 1

r2
@

@r

�
r2
@T

@r

�
; (26)

where Ri � r � Ro, ��=2 � � � �=2, �� < � � � are the standard spherical coordinates,
u D .ur ; u� ; u�/ is the velocity field in spherical coordinates, T is temperature, and �S is the
surface Laplacian operator. The boundary conditions on the velocity of the fluid at the inner and
outer surfaces of the spherical shell are assumed to be impermeable and shear stress-free, which
translates into

ˆjrDRi;Ro
D 0 and

@2ˆ

@r2

ˇ
ˇ
ˇ
ˇ
rDRi;Ro

D 0: (27)

The boundary conditions on the temperature are

T .Ri; �; �/ D 1 and T .Ro; �; �/ D 0:

Equations (24)–(26) have been nondimensionalized with the length scale chosen as the thick-
ness of the shell, �R D Ro � Ri; the timescale chosen as the thermal diffusion time,
t D .�R/2=� (� = thermal diffusivity); and the temperature scale chosen as the difference between
the temperature at the inner and outer boundaries, �T . In the experiments below, the inner and
outer radii of the shell are set to Ro D 20=9 and Ri D 11=9, which give approximately the same
ratio of the inner and outer radii of the Earth’s mantle (i.e., 0:55).

5.2.1 Overview of the Numerical Approach

To numerically solve (24)–(26), an operator-splitting method similar to Wright et al. (2010) is used
in space where the lateral directions .�; �/ are discretized separately from the radial direction (see
Fig. 13 for an illustration).M Chebyshev nodes are used in the radial direction, and N “scattered”
nodes are used on each of the resulting M spherical surfaces, giving a total of MN nodes in the
3D spherical shell. The maximal determinant (MD) nodes (Womersley and Sloan 2003/2007) are
again used for the spherical surfaces. All radial derivatives are discretized using collocation with
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Fig. 13 (a) Node layout for the RBF-FD approximations on the surface of a sphere; (b) 3D view of the discretization
of the spherical shell used in the hybrid RBF-FD/Chebyshev calculation. Blue is the outer boundary and red is the
inner boundary, and black circles display the computational nodes, which are distributed in the radial direction along
the extrema of the Chebyshev polynomials. The spherical shell has been opened up in (b) to show the detail of the
radial discretization

Chebyshev polynomials (see, for example, Fornberg 1996; Trefethen 2000 for details), while all
differential operators in the latitudinal direction � and longitudinal direction � are approximated
on each spherical surface using n-node RBF-FD stencils.

The complete numerical algorithm is nearly identical to the one in Wright et al. (2010), with the
only difference being that RBF-FD is used instead of global RBFs. The reader is therefore referred
to Appendix B of Wright et al. (2010) for a detailed description. A general overview is given by
the following steps:

1. Discretize
@

@�
,

1

cos �

@

@�
, and �S at each of the N MD nodes using n point RBF-FD formula.

As discussed in Wright et al. (2010), the coordinate singularities associated with the latter of
these two operators is harmlessly removed when applied to an RBF expansion.

2. Discretize
@

@r
,
@

@r

�
r2
@

@r

�
,
@2

@r2

ˇ
ˇ̌
ˇ
rDRi

, and
@2

@r2

ˇ
ˇ̌
ˇ
rDRo

using collocation with M Chebyshev

polynomials.
3. With the given temperature initial condition, solve the Poisson equations (24) and (25) for �

and ˆ. This procedure is complicated by the fact that all four boundary conditions on these
equations are only specified on ˆ. To handle this, the influence matrix (Peyret 2002) method is
employed to find the unknown boundary values on � such that all four boundary conditions on
ˆ are satisfied (see Section 5 of Wright et al. 2010).

4. Compute the velocity field: u D r�r�Œ.ˆr/Or� D
�
1

r
�Sˆ;

1

r

@2

@r@�
.ˆr/;

1

r cos �

@2

@r@�
.ˆr/

�
.

5. Update the energy equation (26) to the next time step t C �t using the semi-implicit third-
order Adams–Bashforth (AB3) and second-order trapezoidal rule (or Crank–Nicolson) method.
In this case, all terms are treated explicitly with AB3, except the radial component of the
diffusion term which is treated implicitly using trapezoidal rule. Return to step 3 with an updated
temperature profile.
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Tetrahedral, Ra = 7 · 103 Cubic, Ra = 7 · 103

a b c

Cubic, Ra = 1 · 105

Fig. 14 Steady-state isosurfaces of the residual temperature, ıT , for the three isoviscous benchmark test cases using
the RBF-FD model. Here the residual temperature ıT D T .r; �; �/�hT .r/i is visualized, where h i denotes averaging
over a spherical surface. Yellow corresponds to ıT D 0:15 and denotes upwelling relative to the average temperature
at each radial level, while blue corresponds to ıT D �0:15 and denotes downwelling. The red solid sphere shows the
inner boundary of the 3D shell corresponding to the core. (a)Tetrahedral, Ra D 7 � 103. (b) Cubic, Ra D 7 � 103. (c)
Cubic, Ra D 1 � 105

5.2.2 Validation on Community Benchmark Problems

The two most common benchmarks for computational models of mantle convection in a spherical
shell are the isoviscous steady-state tetrahedral and cubic test cases. These names correspond to
the steady-state upwelling plumes that result from these tests at the faces of regular tetrahedron
and cube, respectively. The initial condition for the temperature is specified as

T .r; �; �/ D Ri.r �Ro/

r.Ri �Ro/
C 0:01Y 2

3 .�; �/ sin

�
�
r � Ri

Ro �Ri

�
(28)

for the tetrahedral test case and

T .r; �; �/ D Ri.r �Ro/

r.Ri �Ro/
C 0:01

�
Y 0
4 .�; �/C 5

7
Y 4
4 .�; �/

�
sin

�
�
r � Ri

Ro �Ri

�
(29)

for the cubic test case, where Y m
` denotes the normalized spherical harmonic of degree ` and

order m. The first term in each of the initial conditions represents a purely conductive temperature
profile, while the second terms are perturbations to this profile and determine the final steady-state
solution.

Both the tetrahedral and cubic tests were first run at Ra D 7;000, with N D 2;601 nodes on
each spherical shell and M D 23 Chebyshev nodes in the radial direction giving a total of 59;823
nodes. Each differential operator on the spherical surfaces was approximated using n D 50 node
RBF-FD formulas. A time step of 10�4 was used to reach steady state at the nondimensionalized
time of t D 1, corresponding to roughly 58 times the age of the Earth. The final RBF-FD steady-
state solutions for the Tetrahedral and Cubic test cases are displayed in Fig. 14a, b, respectively.
As no analytical solutions exist, validation is done via comparison to other published results in the
literature with respect to scalar global quantities, such as Nusselt number at the inner and outer
boundaries (Nui and Nuo), and the averaged root mean square velocity and temperature over the
volume. Such a comparison for the RBF-FD method with respect to established methods (including
the global RBF-PS method Wright et al. 2010) is given in Table 6. For the RBF-FD and RBF-PS
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Table 6 Comparison between computational methods for the isoviscous tetrahedral and cubic mantle convection test
cases with Ra D 7;000. Nuo and Nui denote the respective Nusselt number at the outer and inner spherical surfaces,
hVrmsi the volume-averaged RMS velocity over the 3D shell and hT i the mean temperature of the 3D shell

Model Type Nodes r � .� � �/ Nuo Nui hVrmsi hT i
Tetrahedral test case, Ra D 7;000

Zhong et al. (2008) FE 393;216 32 � .12 � 32 � 32/ 3:5126 3:4919 32:66 0:2171

Yoshida and
Kageyama (2004)

FD 2;122;416 102 � .102 � 204/ 3:4430 — 32:0481 —

Kameyama et al.
(2008)

FD 12;582;912 128 � .2 � 128 � 384/ 3:4945 — 32:6308 0:21597

Ratcliff et al. (1996) FV 200;000 40 � .50 � 100/ 3:4423 — 32:19 —
Stemmer et al. (2006) FV 663;552 48 � .6 � 48 � 48/ 3:4864 3:4864 32:5894 0:21564

Stemmer et al. (2006) FV Extrap. Extrap. 3:4949 — 32:6234 0:21560

Harder (1998) and
Stemmer et al. (2006)

SP-FD 552;960 120 � .48 � 96/ 3:4955 — 32:6375 0:21561

Harder (1998) and
Stemmer et al. (2006)

SP-FD Extrap. Extrap. 3:4962 — 32:6424 0:21556

RBF-PS (Wright
et al. 2010)

SP 36;800 23 � .1;600/ 3:4962 3:4962 32:6424 0:21556

RBF-FD, n D 50 SP-FD 59;823 23 � .2;601/ 3:4962 3:4962 32:6425 0:21556

Cubic test case, Ra D 7;000

Zhong et al. (2008) FE 393;216 32 � .12 � 32 � 32/ 3:6254 3:6016 31:09 0:2176

Yoshida and
Kageyama (2004)

FD 2;122;416 102 � .102 � 204/ 3:5554 — 30:5197 —

Kameyama et al.
(2008)

FD 12;582;912 128 � .2 � 128 � 384/ 3:6083 — 31:0741 0:21639

Ratcliff et al. (1996) FV 200;000 40 � .50 � 100/ 3:5806 — 30:87 —
Stemmer et al. (2006) FV 663;552 48 � .6 � 48 � 48/ 3:5983 3:5984 31:0226 0:21594

Stemmer et al. (2006) FV Extrap. Extrap. 3:6090 — 31:0709 0:21583

Harder (1998) and
Stemmer et al. (2006)

SP-FD 552;960 120 � .48 � 96/ 3:6086 — 31:0765 0:21582

Harder (1998) and
Stemmer et al. (2006)

SP-FD Extrap. Extrap. 3:6096 — 31:0821 0:21578

RBF-PS (Wright
et al. 2010)

SP 36;800 23 � .1;600/ 3:6096 3:6096 31:0820 0:21577

RBF-FD, n D 50 SP-FD 59;823 23 � .2;601/ 3:6095 3:6096 31:0819 0:21577

Extrap. indicates that the results were obtained using Romberg extrapolation
Solid lines indicate numbers were not reported
Abbreviations: FE finite element, FD finite difference, FV finite volume, SP-FD hybrid spectral and finite difference,
SP purely spectral

methods, the standard deviation of all the quantities from the last 1,000 time steps was less than
5 � 10�5, which is a standard measure for indicating the model has reached numerical steady state.

While the Ra D 7;000 tests above are the de facto benchmarks, there are also some results in
the literature also for cubic test at Ra D 105. This Rayleigh number results in a more convective
regime, with thinner plumes, so that higher resolutions are needed to properly capture the solution.
For this test, N D 6;561 nodes were used on each spherical shell and M D 43 Chebyshev nodes
in the radial direction. The spherical surface differential operators were again approximated using
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Table 7 Comparison between computational methods for the isoviscous Cubic mantle convection test case with
Ra D 105

Model Type Nodes r � .� � �/ Nuo Nui hVrmsi hT i
Zhong et al.
(2008)

FE 1;327;104 48 � .12 � 48 � 48/ 7:8495 7:7701 154:8 0:1728

RBF-PS (Wright
et al. 2010)

SP 176;128 43 � .4;096/ 7:8120 7:8005 154:49 0:17123

RBF-FD, n D 50 SP-FD 282;123 43 � .6;561/ 7:8072 7:8030 154:43 0:17069

n D 50. Increasing M necessitates a decrease in the time step to maintain time stability since the
Chebyshev nodes cluster quadratically at the boundaries. A time step of � D 6 � 10�6 was used to
reach a final time of t D 0:35, at which numerical steady state was reached (using the same criteria
as the Ra D 7;000 cases). The final RBF-FD steady-state solution is displayed in Fig. 14c, and a
comparison with two other methods is given in Table 7.

The following observations can be made regarding the results for these benchmarks:

1. For the Ra D 7;000 test case, the results from the RBF-PS method (Wright et al. 2010) and
Harder’s extrapolated results from a spherical harmonic-finite difference method (Harder 1998)
are expected to be correct to four digits. The hybrid RBF-FD method was able to match these
values to four digits for both tests. Furthermore, only in three values does the RBF-FD method
not match the global RBF-PS method to all digits.

2. The number of nodes (degrees of freedom) needed to accomplish the Ra D 7;000 and Ra D 105

results for the RBF-FD method are significantly lower (over an order of magnitude in all but
one case) than any of the other methods that use a hybrid spectral-FD discretization or a full
finite difference, finite volume, or finite element method.

3. The Nusselt number is nondimensional, measuring the ratio of convective to conductive heat
transfer across a boundary. Thus, if there are no sources or sinks in the domain, energy should be
conserved and Nui D Nuo. This is exhibited quite clearly in the Ra D 7;000 cases for the RBF-
FD method (like the RBF-PS), and to a slightly lesser extent in the Ra D 105 (with a difference
of only 0:05%). This suggests the method will inherently dissipate physical quantities less.

4. While the RBF-FD method requires a higher resolution (larger N ) than the global RBF-PS
method to achieve similar results, it has a significant advantage in terms of computational cost
and memory storage, as spatial discretizations require a small fraction of the number of terms
required by the global method.

6 Future Directions and Concluding Remarks

This chapter provides a survey of a group of topics relevant to using RBF-FD, a meshless method,
for a variety of problems that arise in the geosciences, with particular emphasis on spherical
geometries, both on surfaces and within a volume. RBF-FD is a method that has only begun to
grow in the last few years. From a practical standpoint, RBF-FD sprouted out of global RBFs,
which showed exceptional numerical qualities in terms of accuracy and time stability for solving
PDEs but reduction in computational cost needed to be addressed if RBFs were to be effective
when scaled to very large problem sizes. With the RBF-FD methodology, matrices go from full to
becoming 99% empty. Of course, the sacrifice is the exchange of spectral accuracy for high-order
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algebraic convergence, assuming smooth data. However, since natural processes are almost never
infinitely differentiable, little is lost and much gained in terms of memory and runtime.

Although the future of RBF-FD is bright on the horizon, many topics still need to be addressed.
These include but are definitely not limited to improved reliability, effectiveness, and scalability of
RBF-FD implementations on novel computer architectures (Bollig et al. 2012), dynamic adaptive
node refinement (Driscoll and Heryudono 2007), application of preconditioners and iterative
solvers for elliptic PDEs, stability analysis in the presence of boundary conditions for hyperbolic
problems, and the treatment of discontinuities in the domain.
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