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Abstract

A new numerical technique based on radial basis functions (RBFs) is presented for fitting a vector field
tangent to the sphere, S2, from samples of the field at “scattered” locations on S2. The method naturally
provides a way to decompose the reconstructed field into its individual Helmholtz-Hodge components,
i.e. into divergence-free and curl-free parts, which is useful in many applications from the atmospheric
and oceanic sciences (e.g., in diagnosing the horizontal wind and ocean currents). Several approximation
results for the method will be derived. In particular, Sobolev-type error estimates are obtained for
both the interpolant and its decomposition. Optimal stability estimates for the associated interpolation
matrices are also presented. Finally, numerical validation of the theoretical results is given for vector
fields with similar characteristics to those of atmospheric wind fields.

1 Introduction

Vector fields tangent to the surface of the sphere S2 appear in many applications. For example, in the
atmospheric sciences the horizontal velocity of the air in the atmosphere (horizontal wind field) is modeled
as a tangent vector field, while the same is true in the oceanic sciences for the horizontal velocity of the
water in the oceans (surface ocean currents). According to the Helmholtz-Hodge decomposition, any vector
field can be decomposed into three components: a divergence-free component, a curl-free component and
a harmonic component, which is both curl and divergence-free. It is well-known that a vector field can-
not be simultaneously tangent to and harmonic on S2, which ultimately allows every tangent vector field
to be decomposed uniquely into divergence-free and curl-free components. This decomposition can often
provide useful diagnostic information in applications. For example, in the atmosphere the divergence-free
(or rotational) part of the horizontal wind field gives details about cyclonic storms, while the curl-free (or
irrotational) part gives details on high and low pressure systems [16, Ch.3–4]. Similarly, in the ocean, these
respective components of the horizontal ocean currents give information on gyres and overturning flow [35].

We introduce a new technique using radial basis functions (RBFs) for approximating a tangent vector
field and its individual Helmholtz-Hodge components from samples of the field at “scattered” locations on S2.
This is important, since often the values of these vector fields may only be known at non-gridded locations,
e.g., from measurement taken from rawinsondes, airplanes, buoys, remote sensing devices, or from output
from certain numerical models (cf. [38, §4]). Unlike many of the current methods for accomplishing this same
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task (cf. [19, Ch. 4][21]), which are based on approximating the stream function (divergence-free part) and
velocity potential (curl-free part) of the field, our method requires no grid, no computation of the divergence
and vorticity of the field, and no coordinate singularities. Furthermore, the components of the field can be
evaluated at any location on the sphere. The downside, however, is that it may be more computationally
expensive.

Similar techniques to the one presented here for divergence-free and curl-free approximation on S2 was
done in the early 1980’s by Wahba [34]. There the author used vector spherical harmonics, which yield an
approximation of the target field that can be decomposed into its divergence-free and curl-free components
with little difficulty. Later, Freeden and Gervens considered a similar approximation technique using vector
spherical splines [7]. The authors introduced positive definite kernels for fitting and decomposing a field
using spherical basis functions (SBFs). Further progress in the area of vectorial approximation on the sphere
via kernels has been made by the Geomathematics Group at the University of Kaiserslautern [1, 5, 9]. In
none of these methods, however, were optimal error estimates nor stability results obtained. Furthermore,
these methods are intrinsic to the sphere and do not extend to general manifolds.

The present technique is based on the recent work of Narcowich et. al.[31] in which a new class of positive
definite kernels based on RBFs were introduced that yield divergence-free approximants to tangent vector
fields on S2 (and general manifolds). For the case that these divergence-free approximants interpolate the
data, stability and Sobolev error estimates have since been given [12]. We use a similar methodology and
introduce a kernel from which one can build curl-free approximants and a “full” kernel that can be used for
fitting and decomposing a vector field into its divergence-free and curl-free components. Following [12], we
will present stability estimates for the interpolation matrices associated with these new kernels. Further,
for the full kernel we will present error estimates for both the interpolant and its vector decomposition.
We note that two more novelties of this technique are that the kernels used for fitting the data can be
easily constructed from standard RBFs, and the method can be generalized to fitting vector fields tangent
to general manifolds.

Before we introduce how to construct the decomposition, we first explain how to construct an interpolant
to a tangent vector field on S2 given a kernel Ψ(x, y). We use extrinsic (Cartesian) coordinates since they
suffer no pole singularities. Let x, y ∈ S2, and Ψ(x, y) be a 3 × 3 matrix-valued function with the following
property: if s is tangent to S2 at a point y, then Ψ(x, y)s defines a tangent vector field at x. Given nodes
X = {xj}Nj=1 ⊂ S2 and a tangent vector field f sampled on X , we look for an interpolant of the form

t(x) =
N∑

j=1

Ψ(x, xj) sj, (1)

where sj is tangent to S2 at xj . Finding the coefficient vectors amounts to solving the following linear
system:

N∑

j=1

Ψ(xi, xj) sj = f(xi), 1 ≤ i ≤ N.

If Ψ is positive definite, then the matrix associated with this linear system will be positive definite for any
distinct point set X , and hence invertible.

As mentioned above, Narcowich et. al. [31] introduced positive definite, divergence-free kernels on S2,
which we denote by Ψdiv. Using a similar approach, we will derive positive definite, curl-free kernels Ψcurl

on S2. The idea for constructing kernels Ψ that can be used to fit and decompose a vector field is then to
let Ψ := Ψdiv + Ψcurl. Since the sum of two positive definite functions is again positive definite, Ψ is also
positive definite. Using this kernel in (1), the Helmholtz-Hodge decomposition of the interpolant t is simply

t(x) =

N∑

j=1

Ψ(x, xj) sj =

N∑

j=1

Ψdiv(x, xj) sj

︸ ︷︷ ︸
Div. free

+

N∑

j=1

Ψcurl(x, xj) sj

︸ ︷︷ ︸
Curl free

The main goals of this paper are to demonstrate that t not only approximates the field being interpolated,
but that the terms in the decomposition of t approximate the appropriate divergence-free and curl-free parts
of the target field.
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While the applications discussed so far have been on the decomposition of vector fields, we also want
to mention a few applications pertaining to just the approximation of a tangent vector field in which this
new technique could potentially be used. If the kernel Ψ is smooth enough, then the interpolant (1) and
be analytically differentiated to provide an approximation to the divergence or vorticity of the target field.
These quantities are important in meteorology since they are used as the prognostic variables in many of
the models for numerical weather prediction [15, pp. 26–28]. To initialize these models for a forecast (also
called spin-up), an initial value for the vorticity and divergence is needed. This involves several steps, one
of which is using estimates of these values from observed wind data (cf. [3]). Another application pertains
to the shallow water wave equations on a rotating sphere, which describe the motion of a fluid in a single
hydrostatic layer and are used not only as a simplified model for the horizontal dynamics of the atmosphere
(the “dynamic core”) [39], but also as a model for tidal motion [22]. The velocity field of the fluid in these
models is a tangent vector field. The approximation introduced in this paper could be used to fit the velocity
fields generated from simulations of these models, or directly used in the simulation as the representation of
the velocity fields.

The paper is organized as follows. In Section 2 we introduce the necessary background and notation.
The construction of the vector SBF interpolant is given in detail in Section 3. We give optimal stability
estimates for the interpolation process in Section 4. Various error estimates are given in Section 5, including
the main result of the paper, which is to show that the vector SBF interpolant simultaneously approximates
each term in the Helmholtz-Hodge decomposition of the underlying target function. Also, we note that error
estimates will be derived when the target function is too rough to be in the native space of the SBF kernel.
Finally, we end the paper by verifying our results with physically relevant numerical examples.

2 Notation and Preliminaries

We will use the following convention for the Fourier transform of a function or tempered distribution f on
Rn

f̂(ξ) :=

∫

Rn

f(x)e−ix
T ξ dx.

If M is a manifold and x ∈ M , we denote the collection of vectors tangent to M at x by TxM . We write
elements in TxM in bold-face. We will also denote vector functions in bold face, and the space of continuous
tangent vector fields on M will be given by TM . Sobolev spaces on Rn will play a role in the discussion
that follows; we will follow the notation of [2]. We use the usual L2-inner product for scalar functions on
the sphere, namely if f and g are in L2(S

2) then their inner product is given by

〈f, g〉 =

∫

S2

f(x)g(x)dµ(x),

where dµ(x) is the surface measure on the sphere. If f and g are in TS2, we define their inner product by

〈f ,g〉 =

∫

S2

f(x)T g(x)dµ(x), (2)

where the dot product is taken in local coordinates. The closure of TS2 in this inner product will also be
denoted by L2(S

2). This should cause no confusion.
In what follows it will be necessary to use tangential differential operators on the sphere. We will let ∇∗

denote the surface-gradient, L be the surface-curl, and ∆ be the surface-Laplacian. It is not hard to show
that ∇T

∗ ∇∗ = LTL = −∆. Further, a surface-curl of a scalar function is divergence-free, and fields that are
gradients of scalar functions are curl-free.

The geodesic distance between two points x, y ∈ S2 will be denoted by d(x, y). In what follows error and
stability estimates will be given in terms of the separation distance qX and the mesh norm hX of a finite
point set X = {x1, . . . , xN} ⊂ S2. These are defined by

qX :=
1

2
min
i6=j

d(xi, xj) and hX := sup
x∈S2

min
xj∈X

d(x, xj).
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We will also need similar quantities on Rn. Let Ω ⊂ Rn be bounded and let X ⊂ Rn be a finite set of distinct
points. We denote the separation radius and mesh norm in this case as

qX,Rn :=
1

2
min
i6=j

‖xi − xj‖2 and hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2.

2.1 Scalar Function Spaces on S2

A good understanding of functions on the sphere requires one to be well-versed in spherical harmonics. The
standard reference for spherical harmonics is Müller’s book [25]. We let {Yℓ,m | − ℓ ≤ m ≤ ℓ} denote the
spherical harmonics of degree ℓ on S2. These form an orthonormal basis of the eigenspace corresponding to
the eigenvalue ℓ(ℓ + 1) of the Laplace-Beltrami operator ∆ on the sphere. Every function in L2(S

2) has a
Fourier representation of the form

f =

∞∑

ℓ=0

ℓ∑

m=−ℓ
f̂(ℓ,m)Yℓ,m(x) with f̂(ℓ,m) = 〈f, Yℓ,m〉.

The reader will note that we have used f̂ to denote the Fourier transform for functions on the sphere and on
Rn; the meaning of this notation will be made clear by its context. From this representation we also have
Sobolev functions, whose norms can be given via

‖f‖2
Hτ (S2) =

∞∑

ℓ=0

ℓ∑

m=−ℓ
(1 + ℓ(ℓ+ 1))τ |f̂(ℓ,m)|2. (3)

Sobolev spaces on the sphere, or any other manifold, can also be given in terms of charts. Let {Uj, ψj}Nj=1

be an atlas of charts for a manifold M of dimension n. For every such atlas there is a collection {χj : M →
R}Nj=1 of C∞ functions that satisfy

χj ≥ 0, supp(χj) ⊆ Uj ,
∑N

1 χj = 1 on Sn.

Also, for f : M → R we define the projections πj(f) : Rn → R by

πj(χjf) =

{
χjf(ψ−1(x)) x ∈ B(0, 1)

0 otherwise,

where B(0, 1) is the unit ball in Rn. The Sobolev space W τ
p (M) can then be defined by those functions

whose projections are in W τ
p (Rn). The norm for this space is defined by

‖f‖W τ
p (M) =




N∑

j=1

‖πj(χjf)‖2
W τ
p (M)




1/2

.

These spaces are independent of the choice of charts, and when different charts are used the norms are
equivalent [20].

2.2 Tangent Vector Fields on S2

There is a vectorial analogue of spherical harmonics called vector-spherical harmonics [7, 8]. They are not
as well-known as scalar spherical harmonics, but they are widely used when one is dealing with geophysical
applications that are vectorial in nature. These functions come in three L2-orthogonal types: two types that
are tangent to the sphere and one that is normal to the sphere. We are interested in the tangent fields, which
are neatly separated into divergence-free and curl-free fields.

The divergence-free vector-spherical harmonics are given by

yℓ,m = LYℓ,m/
√
ℓ(ℓ+ 1),
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provided of course that ℓ 6= 0. These are clearly divergence-free, and a quick application of integration by
parts shows that they are orthonormal in L2(S). Similarly, one has curl-free vector spherical harmonics,
given by

zℓ,m = ∇∗Yℓ,m/
√
ℓ(ℓ+ 1).

These divergence-free and curl-free spherical harmonics are precisely the eigenfunctions for the Laplace-
Beltrami operator operating on tangent vector fields, and they form a complete orthonormal set for L2(S

2).
We will be interested in several function spaces generated by these fields, which we define now.

Σℓ,div := span {yℓ,m | − ℓ ≤ m ≤ ℓ} , Σℓ,curl := span {zℓ,m | − ℓ ≤ m ≤ ℓ} ,

ΣL :=

L⊕

ℓ=1

(
Σℓ,div

⊕
Σℓ,curl

)

Vector-spherical harmonics give a Fourier analysis on L2(S
2) vector fields. We will denote the Fourier

symbols for a vector function f as

f̃div(ℓ,m) := 〈f ,yℓ,m〉 and f̃curl(ℓ,m) := 〈f , zℓ,m〉.

Each vector function f ∈ L2(S
2) has the Fourier expansion

f =

∞∑

ℓ=1

ℓ∑

m=−ℓ

(
f̃div(ℓ,m)yℓ,m + f̃curl(ℓ,m)zℓ,m

)
.

Inner products are then given by

〈f ,g〉 =

∞∑

ℓ=1

ℓ∑

m=−ℓ

(
f̃div(ℓ,m)g̃div(ℓ,m) + f̃curl(ℓ,m)g̃curl(ℓ,m)

)
.

With this we have the vectorial Sobolev space Hτ (S2), which is the set of all f ∈ L2(S
2) such that

‖f‖2
Hτ (S2) =

∞∑

ℓ=1

ℓ∑

m=−ℓ
(1 + ℓ(ℓ+ 1))τ

(
|̃fdiv(ℓ,m)|2 + |̃fcurl(ℓ,m)|2

)
<∞.

Like the scalar case, we will denote this space by Hτ (S2). It will be clear which space we mean by its context.
We denote by Hτ

div(S
2) and Hτ

curl(S
2) the divergence-free and curl-free subspaces of Hτ (S2), respectively.

As with scalar functions, one can also define Sobolev spaces for tangent vector fields in terms of charts, with
norms equivalent to the ones given. The only complication is that locally one has to deal with vector-valued
functions instead of scalar-valued functions [13].

2.3 Positive Definite Functions on the Sphere

An important class of positive definite functions on the sphere are spherical basis functions (SBFs) [37, Ch.
17]. These are scalar-valued zonal functions with positive Fourier coefficients, i.e. their Fourier series are of
the form

ψ(x · y) =

∞∑

ℓ=0

ψ̂(ℓ)

ℓ∑

m=−ℓ
Yℓ,m(x)Yℓ,m(y), (4)

where ψ̂(ℓ) > 0 for all ℓ. In the following sections we illustrate how these can be used to construct other
useful positive definite functions.

We are ultimately interested in tangent kernels on S2, but it is just as easy to define these kernels on
general manifolds. Let M be an n-dimensional manifold. The kernel Ψ(x, y), locally given by an n × n
matrix-valued function from M ×M to Rn × Rn, is called positive semi-definite if we have

∑

j,k

sTkΨ(xk, xj)sj ≥ 0
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for all finite point sets X = {xj}Nj=1 ⊂ M and all sj ∈ TxjM . When the above quadratic form being zero
implies that sj = 0 for all j, we say that Ψ is positive definite. We will be interested in positive definite
tangent kernels, which have the additional property that Ψ(x, xj)sj ∈ TM provided sj ∈ TxjM .

Recently, positive definite kernels on the sphere were introduced that yield interpolants with no surface
divergence [31]. As it turns out they are relatively easy to construct. Given an SBF ψ, we define the function
Ψdiv via

Ψdiv(x, y) := LxL
T
y [ψ(x · y)] , (5)

where Lx and LTy act only on the x and y variables, respectively. This kernel is positive definite and gives
rise to divergence-free interpolants on the sphere. To see that Ψdiv is positive semi-definite, one first expands
ψ in a Fourier series to get

Ψdiv = LxL
T
y

( ∞∑

ℓ=0

ℓ∑

m=−ℓ
ψ̂(ℓ)Yℓ,m(x)Yℓ,m(y)

)
=

∞∑

ℓ=1

ℓ∑

m=−ℓ
ψ̂(ℓ)LxYℓ,m(x)LTy Yℓ,m(y)

=

∞∑

ℓ=1

ℓ(ℓ+ 1)ψ̂(ℓ)

ℓ∑

m=−ℓ
yℓ,m(x)yTℓ,m(y).

Here we require that ψ̂(ℓ) = O(ℓ−4−ǫ) for some ǫ > 0, which ensures that the above series in convergent
and continuous in both variables. Given a discrete set of points X ⊂ S2 with corresponding tangent vectors
sj ∈ TxjS

2, we have

N∑

j,k=1

sTkΨdiv(xk, xj)sj =
∑

j,k

∞∑

ℓ=1

ℓ(ℓ+ 1)ψ̂(ℓ)

ℓ∑

m=−ℓ
sTk yℓ,m(xk)y

T
ℓ,m(xj)sj

=

∞∑

ℓ=1

ℓ(ℓ+ 1)ψ̂(ℓ)

ℓ∑

m=−ℓ

∣∣∣∣∣∣

N∑

j=1

sTk yℓ,m(xj)

∣∣∣∣∣∣

2

≥ 0.

Further, if ψ̂(ℓ) > 0 for all ℓ ≥ 1, then Ψdiv is positive definite. For a proof, see [31, Section 2.2.1].
Naturally, there is a curl-free analogue that we discuss now. Recall that f is curl-free if and only if

f = ∇∗f for some scalar potential f . Motivated by this, given an SBF ψ, we can construct the matrix-valued
kernel

Ψcurl(x, y) := ∇∗x∇T
∗y[ψ(x · y)], (6)

Again, if ψ̂(ℓ) > 0 for all ℓ ≥ 1, then Ψcurl is positive definite. The proof is the same as the divergence-free
case, with the only modification being to change all occurrences of yℓ,m to zℓ,m. Also, note that the sum of
positive definite functions is again positive definite. As alluded to in the introduction, in what follows we
will also be interested in the positive definite kernel

Ψ := Ψdiv + Ψcurl.

2.4 Constructing Kernels on S2 from RBFs in R3

Above we gave a construction of divergence-free and curl-free kernels from SBFs. However, it is possible
to construct them out of RBFs on R3. In fact, this is how divergence-free SBFs were derived in [31]. The
ability to do this follows from the fact that an RBF restricted to the sphere gives a zonal SBF. Indeed, if
x, y ∈ S2 we have φ(x, y) = φ(‖x − y‖2) = φ(

√
2 − 2 (x · y)) := ψ(x · y). In what follows we will always let

ψ(x, y) denote the SBF obtained by restricting the RBF φ(x, y) to the sphere.
Let x ∈ S2 and let nx denote the unit normal vector to S2 at x. When viewed as acting on vector fields

in R3, the operator L = nx ×∇∗ becomes Qx∇, where ∇ is the usual gradient on R3 and Qx is the matrix
such that Qxs = nx × s, i.e.

Qx :=




0 −x3 x2

x3 0 −x1

−x2 x1 0



 .
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Using this, we get the following formula for Ψdiv.

Ψdiv(x, y) = QTx
(
−∇∇Tφ(x, y)

)
Qy. (7)

Similarly, the surface gradient can be written as ∇∗ = Px∇, where Px = I−xxT projects vectors onto TxS
2.

This gives us
Ψcurl(x, y) = PTx

(
−∇∇Tφ(x, y)

)
Py . (8)

Note the relationship of Ψcurl and Ψdiv in (7) and (8) to the matrix-valued function Φcurl := −∇∇Tφ(x, y).
The function Φcurl is positive definite and gives curl-free interpolants on R3 [10, 11]. In what follows we will
rely on results already known for Φcurl to aid in our discussion of Ψdiv, Ψcurl and Ψ.

2.5 Native Spaces

It is well known that every positive definite function ψ naturally gives rise to a reproducing kernel Hilbert
space, usually referred to as the native space of ψ and denoted by Nψ . Approximation via linear shifts of ψ
is well understood within this space, so a good knowledge of Nψ is important. For SBFs, the native space
has the following characterization

Nψ =

{
f ∈ L2(S

2)

∣∣∣∣∣

∞∑

ℓ=0

ℓ∑

m=−ℓ

|f̂(ℓ,m)|2
ψ̂(ℓ)

<∞
}
,

with inner product given by

〈f, g〉Nψ =

∞∑

ℓ=0

ℓ∑

m=−ℓ

f̂(ℓ,m)ĝ(ℓ,m)

ψ̂(ℓ)
.

This is useful for us because it allows us to work on familiar function spaces, such as Sobolev spaces. Indeed,
if ψ̂(ℓ) ∼ (1 + ℓ(ℓ+ 1))−τ , then it follows that Nψ = Hτ (S2) with equivalent norms.

In the case of tangent kernels, we define the native space as follows. Let F be a Hilbert space of vector-
valued functions tangent to an n-dimensional manifold M . A continuous function Ψ, locally given by an
n× n matrix-valued function, is called a reproducing kernel for F if for all x ∈M and s ∈ TxM we have

1. Ψ(·, x)s ∈ F .

2. sT f(x) = 〈f ,Ψ(·, x)s〉F for all f ∈ F .

If F and Ψ satisfy the above properties, we say F is the native space for the kernel Ψ and we denote F by
NΨ.

Interpolants generated by the reproducing kernel enjoy nice properties within the natives space. In
particular, if f is in NΨ and IX f is the interpolant to f generated by the kernel Ψ one gets the Pythagorean
Law

‖f − IX f‖2
NΨ

+ ‖IX f‖2
NΨ

= ‖f‖2
NΨ
.

This immediately gives us the following estimate:

‖f − IX f‖NΨ
≤ ‖f‖NΨ

. (9)

It is useful when the native space can be characterized as a concrete function space. In [12, Theorem 2.2]
it was shown that the inner-product for NΨdiv is

〈f ,g〉NΨdiv
=

∞∑

ℓ=1

ℓ∑

m=−ℓ

f̃div(ℓ,m)g̃div(ℓ,m)

ℓ(ℓ+ 1)ψ̂(ℓ)
,

giving

NΨdiv =

{
f ∈ H0

div(S
2)

∣∣∣∣∣

∞∑

ℓ=1

ℓ∑

m=−ℓ

|̃fdiv(ℓ,m)|2
ℓ(ℓ+ 1)ψ̂(ℓ)

<∞
}
.
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From this it follows that if ψ̂(ℓ) ∼ (1 + ℓ(ℓ+ 1))−(τ+1), then NΨdiv = Hτ
div(S

2) with equivalent norms.
There are similar characterizations of native spaces for Ψcurl and Ψ. Namely, NΨcurl consists of all

functions in H0
curl(S

2) with finite norm in the inner-product given by

〈f ,g〉NΨcurl
=

∞∑

ℓ=1

ℓ∑

m=−ℓ

f̃curl(ℓ,m)g̃curl(ℓ,m)

ℓ(ℓ+ 1)ψ̂(ℓ)
.

The space NΨ is given by the closure of L2 vector functions in the following inner-product.

〈f ,g〉NΨ
=

∞∑

ℓ=1

ℓ∑

m=−ℓ

(
f̃curl(ℓ,m)g̃curl(ℓ,m)

ℓ(ℓ+ 1)ψ̂(ℓ)
+

f̃div(ℓ,m)g̃div(ℓ,m)

ℓ(ℓ+ 1)ψ̂(ℓ)

)
.

As mentioned in the previous section, we will concentrate on kernels that are gotten from an RBF φ. So
that we can work with Sobolev functions, here and throughout the rest of the paper we will assume that the
RBF φ satisfies

φ̂(ξ) ∼ (1 + ‖ξ‖2
2)

−(τ+ 3
2
), (10)

where τ > 1 and φ̂ is the Fourier transform of φ in the R3 sense. We claim that this ensures that our native
spaces are Sobolev. Indeed, if ψ is an SBF obtained by restricting φ to the sphere, by [26, Proposition 4.1]

we have that ψ̂(ℓ) ∼ (1 + ℓ(ℓ + 1))−(τ+1). The result is that if φ satisfies (10), we have NΨdiv = Hτ
div(S

2),
NΨcurl = Hτ

curl(S
2) and NΨ = Hτ (S2), all with equivalent norms. We should mention that there are several

well-known RBFs satisfying (10), such as Matérn [24] and Wendland [36] functions, which are both used for
the numerical examples in Section 6.

3 Constructing the vector SBF Interpolants

The ability to use extrinsic coordinates for constructing the vector SBF interpolants has many benefits,
with the primary one being that it entirely avoids any coordinate singularities introduced by the intrinsic
coordinate system. For the sphere, these singularities are commonly called the “pole-problem”. However,
when using extrinsic coordinates one must be mindful that we are solving for tangent vectors. A naive
approach to solving for the interpolation coefficient vectors might lead to a singular system of equations.
Therefore we give a brief overview of how to set up the vector interpolant and the corresponding matrix for
determining interpolation coefficients using the R3 coordinate system.

Let X = {xj}Nj=1 = {(xj,1, xj,2, xj,3)}Nj=1 be some distinct set of nodes on S2 and let {dj , ej,nj} denote

an orthonormal coordinate system at each xj , where nj is the outward normal to S2, ej is a unit tangent
vector, and dj = nj × ej . The components for nj are simply the coordinates of xj and one obvious choice
for the tangent vectors dj and ej are the standard meridional and zonal vectors, respectively:

dj =
1√

1 − x2
j,3



−xj,3xj,1
−xj,3xj,2
1 − x2

j,3


 , ej =

1√
1 − x2

j,3



−xj,2
xj,1
0


 , (11)

which form an orthonormal basis for the tangent space TxjS
2.

If f is some tangent vector field and {fj}Nj=1 = {[fj,1 fj,2 fj,3]T }Nj=1 are samples f onX then the vector SBF

interpolant to f is constructed from linear combinations of the tangent vector basis {(Ψ(x, xj)dj ,Ψ(x, xj)ej)}Nj=1,
i.e. the interpolant is of the form

IXf =

N∑

j=1

Ψ(x, xj) [αjdj + βjej ]︸ ︷︷ ︸
sj

(12)

where Ψ is positive definite. Illustrations of the respective meridional and zonal basis vectors formed by
Ψdiv, Ψcurl, and Ψ := Ψdiv + Ψcurl are displayed in Figure 1.
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Combined = Div. Free + Curl Free

(a) Meridional basis Ψ(x, xj)dj

(b) Zonal basis Ψ(x, xj)ej

Figure 1: Illustration of the (a) meridional and (b) zonal vector basis functions formed by the tangent kernel
Ψ := Ψdiv + Ψcurl for interpolating and decomposing tangent vector fields. Here xj is chosen as (1, 0, 0) and
the vectors dj and ej are defined in (11). All the plots are orthographic projections of the fields displayed
from 0◦ longitude and 0◦ degrees latitude, and each field has been normalized by its max norm for displaying
purposes. The Matérn RBF was used to construct Ψ.

The interpolation coefficient vectors sj in (12) are determined by solving the linear system

N∑

j=1

Ψ(xi, xj) [αjdj + βjej ] = fi, 1 ≤ i ≤ N, (13)

for αj and βj . However, this is not a square system since each fi has three components. To make a square
system, we note that fi can also be expressed in terms of the orthonormal tangent vectors di and ei as
fi = γidi + δiei, where [

γi
δi

]
=

[
dTi
eTi

]
fi

Using this result, we can rewrite (13) as the 2N × 2N linear system

N∑

j=1

([
dTi
eTi

]
Ψ(xi, xj)

[
dj ej

])

︸ ︷︷ ︸
A

(2)
i,j

[
αj
βj

]
=

[
γi
δi

]
, 1 ≤ i ≤ N. (14)

The (i, j)th 2 × 2 block of the 2N × 2N matrix arising from this linear system is given by A
(2)
i,j . This inter-

polation matrix will be invertible if Ψ is positive definite. In what follows, we will denote this interpolation
matrix by AX,Ψ when Ψ := Ψdiv + Ψcurl, and AX,Ψcurl when Ψ := Ψcurl.
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We conclude by noting that if Ψ is constructed from an RBF φ, then the following formula for A
(2)
i,j can

be worked out:

A
(2)
i,j =

[
−ei · ej ei · dj
di · ej −di · dj

]
η(rij) +

[
ei · nj
−di · nj

] [
ni · ej −ni · dj

]
ζ(rij)

︸ ︷︷ ︸
Div. free share

−

[
di · dj di · ej
ei · dj ei · ej

]
η(rij) +

[
di · nj
ei · nj

] [
ni · dj ni · ej

]
ζ(rij)

︸ ︷︷ ︸
Curl free share

,

where rij = ‖xi − xj‖2, η(r) = φ′(r)/r, and ζ(r) = η′(r)/r.

4 Stability of the Interpolation Process

In this section we study the stability of the interpolation process when the tangent kernels Ψ and Ψcurl are
employed. We do this by first estimating the smallest eigenvalue of the interpolation matrix AX,Ψcurl , which
we denote by λmin(AX,Ψcurl). We will then use these results to derive stability estimates for AX,Ψ. As is
typical in stability estimates for kernels, the estimates will depend upon the separation radius qX of the
point set X and the smoothness of the kernel. The reader should note that our arguments will only be valid
when the matrix kernel is constructed from an RBF on R3.

Stability estimates for the divergence-free basis function Ψdiv were given in [12, Theorem 3.8]. There
the authors were able to use the form of the kernel given in (7) to “lift” the problem from the sphere to
estimates involving the kernel Φcurl in R3. More precisely, the authors were able to show that any eigenvalue
of AX,Ψdiv is bounded from below by λmin(AX,Φcurl ). They then used the following proposition.

Proposition 1 ([10, Theorem 7]). Let φ be an even, positive definite function, which possesses a positive

Fourier transform φ̂ ∈ C(Rn/0). With the function

M(σ) := inf
‖ξ‖2≤σ

φ̂(ξ)

a lower bound on λmin(AX,Φcurl ) is given by

λmin(AX,Φcurl) ≥
(
σ2

16π

)(n+2)/2
M(σ)π

(4π)nΓ ((n+ 2)/2)

for any σ > 0 satisfying
σ ≥ C/qX,Rn .

Here the constant C is independent of X and φ.

Following [12], we will show that every eigenvalue ofAX,Ψcurl is also bounded from below by λmin(AX,Φcurl ).
We will transition from intrinsic to extrinsic coordinates on the sphere using the notation in Section 3. Let
c̃ be a unit eigenvector of AX,Ψcurl with corresponding eigenvalue λ. Let c̃j = [αj βj ]

T be the vector whose
components are given by the jth 2-block of c̃. Finally we let cj = αjdj + βjej , which is the usual represen-

tation of c̃j in R3, and define c to be the 3N × 1 vector whose jth 3-component block is given by cj . Now
we have

λ = c̃TAX,Ψcurl c̃ =
∑

i,j

c̃Ti

[
dTi
eTi

]
Ψcurl(xi, xj)

[
dj ej

]
c̃j =

∑

i,j

cTi Ψcurl(xk, xj)cj .

Rewriting Ψcurl in terms of Φcurl as in (8), we continue to get
∑

i,j

cTi
(
PTxiΦcurl(xi, xj)Pxj

)
cj =

∑

i,j

cTi Φcurl(xi, xj)cj ≥ λmin(AX,Φcurl )‖c‖2
2,

where we have used the fact that cj ∈ TxjS
2. Finally, note that ‖c‖2 = ‖c̃‖2 = 1. The result is λ ≥

λmin(AX,Φcurl). With this estimate, Proposition 1, and the fact that qX,R3 ∼ qX , we have the following
theorem.
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Theorem 1. Let φ be an even positive definite function, which possesses a positive Fourier transform
φ̂ ∈ C(R3/0). Let Ψcurl be the curl-free SBF kernel on S2 generated by φ. With the function

M(σ) := inf
‖ξ‖2≤σ

φ̂(ξ),

a lower bound on λmin(AX,Ψ) is given by

λmin(AX,Ψcurl) ≥
(
σ2

16π

)5/2
M(σ)π

(4π)3Γ (5/2)

for any σ > 0 satisfying
σ ≥ C/qX .

Here the constant C is independent of X and φ.

When the kernel has finite smoothness, i.e. φ satisfies (10), we get the following corollary.

Corollary 1. If the Fourier transform of the RBF φ satisfies (10), then the smallest eigenvalue of the
interpolation matrix AX,Ψcurl can be bounded by

λmin(AX,Ψcurl) ≥ Cq2τ−2
X ,

where C is a constant independent of X and Ψcurl.

It can be shown by a similar argument as in [12] that, in terms of the power of the separation radius, these
estimates are the best possible. Also note that Theorem 1, when combined with the analogous divergence-free
result in [12], automatically gives us stability estimates for AX,Ψ, which we state below.

Corollary 2. If the Fourier transform of the RBF φ satisfies (10), then the smallest eigenvalue of the
interpolation matrix AX,Ψ can be bounded by

λmin(AX,Ψ) ≥ Cq2τ−2
X ,

where C is a constant independent of X and Ψ.

5 Error Rates

The purpose of this section is demonstrate that vector SBF interpolants approximate a wide class of func-
tions, including those outside of the native space. We begin the section with a study of interpolation and
approximation via vector spherical polynomials. Then we proceed to derive approximation rates for functions
within the native space. Using the standard “doubling trick” from splines, we will show next that smoother
functions within the native space enjoy faster approximation rates. We then concentrate on target functions
that are too rough to be in the native space. Finally, we will present the main result of the paper by showing
that the approximation takes place simultaneously on each term of the Helmholtz-Hodge decomposition, i.e.
the divergence-free term of the interpolant approximates the divergence-free term of the target function, etc.

5.1 Interpolation and Approximation via Vector Spherical Polynomials

Being able to find approximation rates for target functions that are not in the native space is known as
“escaping” the native space. The intial escape was first proven in the case of scalar RBFs by Narcowich,
Ward and Wendland, and their technique has since been applied to various situations involving RBFs [11,
12, 26, 27, 30]. A common theme in all these cases is to use functions that are band-limited, that is,
functions whose Fourier transforms are compactly supported. For vector functions on the sphere, band-
limited functions are simply vector spherical polynomials. In our case the idea is to find a band-limited
function that simultaneously interpolates and approximates the target function. The goal of this section is
to prove the following theorem.
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Theorem 2. Let τ > 1. There exists constants κ and C, both of which depend only on τ , such that if
L ≥ κ/qX , then for every f ∈ Hτ (S2), there is a vector polynomial p ∈ ΣL such that p|X = f |X and p

approximates f in the sense that

‖f − p‖Hτ (S2) ≤ C distHτ (S2)(f ,ΣL).

A divergence-free variation of this theorem has been proven in [12]. However, because we are dealing with a
slightly more general case we will provide a thorough outline of the proof for the convenience of the reader.
Ultimately this result relies on the following proposition, whose proof can be found in [28].

Proposition 2. Let Y be a (possibly complex) Banach Space, V be a subspace of Y, and Z∗ be a finite
dimensional subspace of Y∗, the dual of Y. If for every z∗ ∈ Z∗ and some β > 1, β independent of z∗,

‖z∗‖Y∗ ≤ β‖z∗|V‖V∗ , (15)

then for y ∈ Y there exists v ∈ V such that v interpolates y on Z∗; that is, z∗(y) = z∗(v) for all z∗ ∈ Z∗. In
addition, v approximates y in the sense that ‖y − v‖Y ≤ (1 + 2β)dist(y,V).

We will apply Proposition 2 to the following situation:

Y = NΨ, V = ΣL, Z∗ = span
{
cTj δxj : xj ∈ X, cj ∈ TxjS

2
}
,

where Ψ is chosen so that Hτ (S2) = NΨ with equivalent norms. Following the discussion in Section 2.5,

the obvious choice is to build Ψ out of any RBF satisfying (10). We choose the RBF φ given by φ̂(ξ) =
(1 + ‖ξ‖2)−(τ+3/2), i.e. a Matérn kernel [24].

The next step is to rewrite all functionals involved in terms of their Reisz representers, and since we are
dealing with native spaces the Reisz representers can be expressed in terms of reproducing kernels. Recall
that the kernel of NΨ is Ψ(x, y), and by expanding Ψ in a Fourier series, we have

Ψ(x, y) =

∞∑

ℓ=1

ℓ∑

m=−ℓ
ℓ(ℓ+ 1)ψ̂(ℓ)

(
yℓ,m(x)yTℓ,m(y) + zℓ,m(x)zTℓ,m(y)

)
.

From this we get a simple representation for the kernel of Hτ (S2)|ΣL , given by

ΨL(x, y) =
L∑

ℓ=1

ℓ∑

m=−ℓ
ℓ(ℓ+ 1)ψ̂(ℓ)

(
yℓ,m(x)yTℓ,m(y) + zℓ,m(x)zTℓ,m(y)

)
.

If z∗ =
∑

cTj δxj , then the Riesz representers are given by g(x) =
∑N

j=1 Ψ(x, xj)cj and gL(x) =
∑N
j=1 ΨL(x, xj)cj .

Now using this and the fact that g and g − gL are orthogonal in NΨ, one can show that (15) is equivalent
to the estimate

‖g − gL‖2
NΨ

‖g‖2
NΨ

≤ 1 − 1

β2
. (16)

Instead of estimating the above quantity directly, it is possible to “lift” the problem to R3 and use
previously proven results. More specifically, from (7) and (8), we have

Ψ(x, y) = PTx Φcurl(x, y)Py +QTxΦcurl(x, y)Qy . (17)

As mentioned before, the kernel Φcurl, which gives curl-free interpolants in R3, has been studied: it is positive
definite on R3 and estimates similar to (16) have been given [11]. We will use (17) to transfer the problem
from NΨ to NΦcurl . This is encapsulated in the following lemma.

Lemma 1. Let X = {xj}Nj=1 be a finite set of distinct points in S2 and let cj ⊂ R3 be such that cj ∈ TxjS
2

for all j. Also, let c̀j = nxj × cj . Then we have

‖
∑

j

Ψ(x, xj)cj‖2
NΨ

= ‖
∑

j

Φcurl(x, xj)cj‖2
NΦcurl

+ ‖
∑

j

Φcurl(x, xj)c̀j‖2
NΦcurl

.
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Proof. Recall that Qxp = nx × p and Pxp = p if p ∈ Tx(S
2). Using this and standard properties of

reproducing kernels, we have

‖
∑

j

Ψ(x, xj)cj‖2
NΨ

=
∑

j,k

cTkΨ(xk, xj)cj =
∑

j,k

(
cTkΦcurl(xk, xj)cj + c̀k

TΦcurl(xk, xj)c̀j

)

= ‖
∑

j

Φcurl(x, xj)cj‖2
NΦcurl

+ ‖
∑

j

Φcurl(x, xj)c̀j‖2
NΦcurl

.

This completes the proof.

The next step is to deal with lifting gL to NΦcurl . This function is band-limited, and the results we would
like to employ involve functions that are also band-limited, except in the R3 sense. However, the “lifted”
version of gL may fail to be band-limited on R3. Nevertheless, there is a way to work around this issue.
Before we show this, it is necessary to introduce some notation.

Let σ > 0. We let φσ be defined by φ̂σ = χσφ̂, where χσ is the characteristic function on the ball of radius
σ. Define Φcurl,σ to be the curl free kernel generated by φσ , i.e., Φcurl,σ = −∇∇Tφσ. We denote the SBF
obtained by restricting φσ(x, y) to S2 × S2 by ψσ. Also, we let Ψdiv,σ and Ψcurl,σ denote the divergence free
and curl free SBFs generated by ψσ, respectively. Finally, to condense some of our equations we introduce
the notation

g1(x) :=
∑

j

Φcurl(x, xj)cj , g2(x) :=
∑

j

Φcurl(x, xj)c̀j

g1,σ(x) :=
∑

j

(Φcurl(x, xj) − Φcurl,σ(x, xj)) cj

g2,σ(x) :=
∑

j

(Φcurl(x, xj) − Φcurl,σ(x, xj)) c̀j

With this notation we present the following lemma, which will allow us to circumvent the issue mentioned
in the previous paragraph.

Lemma 2. There exists a constant and L0 > 0 such that if L ≥ L0 and σ ≤ e−1L, then

‖g − gL‖2
NΨ

≤ 2
(
‖g1,σ‖2

NΦcurl
+ ‖g2,σ‖2

NΦcurl

)
.

Proof. Using properties of reproducing kernels and the Fourier expansions of Ψ and ΨL, it is straightforward
to show the following

‖g − gL‖2
NΨ

=

∞∑

ℓ=L+1

ℓ∑

m=−ℓ
ℓ(ℓ+ 1)ψ̂(ℓ)




∣∣∣∣∣∣

N∑

j=1

cTj yℓ,m(xj)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

N∑

j=1

cTj zℓ,m(xj)

∣∣∣∣∣∣

2

 .

By [27, Equation 4.13], there exists L0 such that if L ≥ L0 and σ ≤ e−1L we have ψ̂(ℓ) ≤ 2(ψ̂(ℓ) − ψ̂σ(ℓ)).
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Using this fact along with standard properties of reproducing kernels gives us

‖g − gL‖2
NΨ

≤ 2

∞∑

ℓ=L+1

ℓ∑

m=−ℓ
ℓ(ℓ+ 1)(ψ̂ − ψ̂σ)(ℓ)




∣∣∣∣∣∣

N∑

j=1

cTj yℓ,m(xj)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

N∑

j=1

cTj zℓ,m(xj)

∣∣∣∣∣∣

2



< 2

∞∑

ℓ=1

ℓ∑

m=−ℓ
ℓ(ℓ+ 1)(ψ̂ − ψ̂σ)(ℓ)




∣∣∣∣∣∣

N∑

j=1

cTj yℓ,m(xj)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

N∑

j=1

cTj zℓ,m(xj)

∣∣∣∣∣∣

2



= 2



∑

j,k

cTk (Ψdiv − Ψdiv,σ) (xk, xj)cj + cTk (Ψcurl − Ψcurl,σ) (xk, xj)cj




= 2



∑

j,k

c̀k
T (Φcurl − Φcurl,σ) (xk, xj)c̀j + cTk (Φcurl − Φcurl,σ) (xk, xj)cj




= 2
(
‖g1,σ‖2

NΦcurl
+ ‖g2,σ‖2

NΦcurl

)
.

Now we have enough machinery to prove Theorem 2.

Proof of Theorem 2. Recall that the proof will follow if we can show that (16) holds for some constant β.
We will be able to choose β = 2. A quick application of Lemma 1 yields the identity

‖g‖2
NΨ

= ‖g1‖2
NΦcurl

+ ‖g2‖2
NΦcurl

.

By applying Lemma 2, we get

‖g − gL‖2
NΨ

‖g‖2
NΨ

≤ 2
‖g1,σ‖2

NΦcurl
+ ‖g2,σ‖2

NΦcurl

‖g1‖2
NΦcurl

+ ‖g2‖2
NΦcurl

≤ 2

(‖g1,σ‖2
NΦcurl

‖g1‖2
NΦcurl

+
‖g2,σ‖2

NΦcurl

‖g2‖2
NΦcurl

)
.

The ratio ‖g1,σ‖2
NΦcurl

/‖g1‖2
NΦcurl

can be measured by the same techniques used in [11, Proof of Lemma 2].

The result is
‖g1,σ‖2

NΦcurl

‖g1‖2
NΦcurl

≤ C(σqX,R3)2−2τ ,

where qX,R3 is the separation radius of X in the R3 sense, and C is a constant independent of σ and X . One
can bound ‖g2,σ‖2

NΦcurl
/‖g2‖2

NΦcurl
similarly. The result is

‖g − gL‖2
NΨ

‖g‖2
NΨ

≤ C(σqX,R3)2−2τ .

Now note that qX,R3 is equivalent to qX up to a constant factor, and by Lemma 2 we may choose σ = e−1L
to get

‖g − gL‖2
NΨ

‖g‖2
NΨ

≤ C(LqX)2−2τ .

Now we let L = κ/qX , where κ is chosen so large that the right hand side is less than 3/4. This is equivalent
to (15) with β = 2. Applying Proposition 2 and using the fact that the native space of Ψ is equivalent in
norm to Hτ (S2) gives us the result.
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5.2 Interpolation Error for Smooth and Rough Target Functions

Now we shift our attention to the error associated with the interpolation problem. Many of the arguments
that follow have been applied in several other situations. Sobolev error estimates have been derived in a
similar way for scalar and matrix-valued RBFs and scalar SBFs [11, 26, 27, 30]. In fact, the methods we
employ here have been recently used to derive similar results for the divergence-free tangent kernel Ψdiv [12,
Section 4].

For the first two results, we assume that all data is generated by a target function smooth enough to be
within the native space of the kernel. Historically in this case one would use the “Power Function” method
to derive pointwise error estimates [18, 23, 41]. However, if the native space is Sobolev one can instead use
recent Sobolev estimates for functions with scattered zeros on Rn. Specifically, one can use the following
proposition, whose proof can be found in [29].

Proposition 3. Let k be a positive integer, 0 ≤ s < 1, and define τ = k + s. Also, let 1 ≤ p < ∞,
1 ≤ q ≤ ∞, and let µ be an integer satisfying k > µ+ n/p, or p = 1 and k ≥ µ+ n. Finally, let Ω ⊂ Rn be
a compact set and let X ⊂ Ω be a discrete set with mesh norm hX,Ω. Then there is a constant C0 such that
if hX,Ω ≤ C0 and if u ∈W τ

p (Rn) satisfies u|X = 0, then

|u|Wµ
q (Rn) ≤ Ch

τ−µ−n(1/p−1/q)+
X,Ω |u|W τ

p (Rn), (18)

where (x)+ = x is x ≥ 0 and is 0 otherwise. Here the constant C is independent of hX,Ω and u.

This estimate can be easily adapted from Rn to vector fields on the sphere via coordinate charts. This is
the main ingredient in the following theorem. Hereafter we let τ , µ, and q be as in the previous proposition.
Also, so that NΨ = Hτ (S2), we suppose that Ψ is generated by an RBF φ satisfying (10).

Theorem 3. Using the kernel Ψ, let IX f be the interpolant to the target function f on the node set X ⊂ S2.
Then we have the following error estimate.

‖f − IX f‖Wµ
q (S2) ≤ Ch

τ−µ−2(1/2−1/q)+
X ‖f‖Hτ (S2). (19)

Outline of proof. Following the remarks made above, one obtains the powers of hX by using the fact that
the error function is Sobolev with many zeros. The rest of the proof follows by using properties of the norm
of the interpolation error in NΨ = Hτ (S2). The proof is identical to that of [12, Theorem 4.5], with obvious
modifications, so we refer the reader to that paper for further details.

If our target function is very smooth, i.e. f ∈ Hβ(S2) with β > τ , one gets even faster convergence.
Specifically, using the standard “doubling trick” from splines gives us the following. The proof follows
similar steps to the one given in [12, Corollary 4.6], so we omit the proof.

Corollary 3. Let f ∈ H2τ−µ. Using the kernel Ψ, let IXf be the interpolant to the target function f on the
node set X ⊂ S2. Then we have the following error estimate.

‖f − IX f‖Hµ(S2) ≤ Ch
2(τ−µ)
X ‖f‖H2τ−µ(S2).

We now state interpolation error estimates when the target function is less smooth than functions in the
native space. The proof of this result relies on the band-limited interpolation results from Section 5.1.

Theorem 4. Let τ ≥ β > 1 and let φ be an RBF satisfying (10). Also, let X = {xj}Nj=1 ⊂ S2 be a set of

distinct points with mesh norm hX , separation radius qX and mesh ratio ρX = hX/qX. If f ∈ Hβ(S2), then
for 0 ≤ µ ≤ ⌊β⌋ − 1 we have

‖f − IX f‖Wµ
q (S2) ≤ Cρτ−βX h

β−µ−2(1/2−1/q)+
X ‖f‖Hβ(S2).

Outline of Proof. One gets the powers of hX by using the fact that the error is Sobolev with many zeros:

‖f − IX f‖Wµ
q (S2) ≤ Ch

β−µ−2(1/2−1/q)+
X ‖f − IX f‖Hβ(S2).
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The remainder of the proof is to bound ‖f − IX f‖Hβ(S2). The next step is to add and subtract the band-
limited function p that interpolates f from Theorem 2 to the error function and apply a triangle inequality,
giving

‖f − IX f‖Hβ(S2) ≤ ‖f − p‖Hβ(S2) + ‖p− IXp‖Hβ(S2).

Finally, one can apply Theorem 3, the approximation properties of p and a Bernstein inequality to finish
the proof. For details, see the proof of [12, Theorem 4.7].

5.3 Approximation of the Vector Decomposition

We now come to the main result of the paper, which is to show that all approximation takes place simulta-
neously on each term of the Helmholtz-Hodge decomposition. We denote by Pdiv the L2-projection of vector
fields onto the subspace of divergence-free functions, which is defined by

˜(Pdivf)div(l,m) = f̃div(l,m) and ˜(Pdivf)curl(l,m) = 0.

From this we can see that even though this projection is defined in the L2-topology, the same linear operator
is also a projection from Hβ(S2) to Hβ

div(S
2) for all β ≥ 0. This gives us the following inequality

‖fdiv − (IX f)div‖Hβ(S2) = ‖Pdiv(f − IX f)‖Hβ(S2) ≤ ‖f − IX f‖Hβ(S2).

A similar estimate holds for curl-free functions. With this simple observation the result follows as a corollary
to Theorem 4 and Corollary 3.

Theorem 5. Let τ ≥ β > 1 and let φ be an RBF satisfying (10). Also, let X = {xj}Nj=1 ⊂ S2 be a set of

distinct points with mesh norm hX , separation radius qX and mesh ratio ρX = hX/qX. If f ∈ Hβ(S2), then
for 0 ≤ µ ≤ ⌊β⌋ − 1 we have the following error estimates

‖fdiv − (IX f)div‖Hµ(S2) ≤ Cρτ−βX hβ−µX ‖f‖Hβ(S2)

‖fcurl − (IX f)curl‖Hµ(S2) ≤ Cρτ−βX hβ−µX ‖f‖Hβ(S2).

Furthermore, if f ∈ H2τ−µ(S2) we have the estimates

‖fdiv − (IX f)div‖Hµ(S2) ≤ Ch
2(τ−µ)
X ‖f‖H2τ−µ(S2)

‖fcurl − (IXf)curl‖Hµ(S2) ≤ Ch
2(τ−µ)
X ‖f‖H2τ−µ(S2).

6 Numerical Results

Numerical results are presented in this section which verify the above predicted results for the stability
(Corollary 2) and the Sobolev error estimates (Corollary 3, and Theorems 4 and 5) for the vector SBF
interpolant and its decomposition. The setup for the numerical experiments is similar to the setup in [12]
for verifying the estimates for the divergence-free SBF interpolants.

6.1 Kernels

To test the stability and error estimates, we use four different kernels Ψ, which are generated from the
restriction to the sphere of two different classes of positive definite RBFs: Matérn and Wendland.

The Matérn (or Sobolev spline) functions were introduced for applications in [24], and are arguably the
most popular and most important family of kernels for statistical applications [14]. They are defined by

MAν : φ(r) =
21−ν

Γ(ν)
(εr)νKν(εr),

where Kν corresponds to the K-Bessel function of order ν and ε > 0 is the free shape parameter. In R3, the
Fourier transform of φ decays like

φ̂(ξ) ∼ (1 + ‖ξ‖2
2)

−(ν+ 3
2
).
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Thus, the tangent kernel Ψ generated from MAν gives rise to the native space NΨ = Hν(S).
The Wendland functions were first introduced in [36] and have also been used successfully in many

applications [37]. They are tailored to be positive definite, compactly supported, and of a specific smoothness
in the particular dimension n the underlying approximation problem is posed in. Their general form is given
by

WEn,k : φ(r) =

{
pn,k(r), 0 ≤ r ≤ δ,

0, r > δ,

where pn,k is a polynomial of degree ⌊n/2⌋ + 3k + 1, φ ∈ C2k, and δ > 0 is the support radius. In R3, the
Fourier transform of φ decays like [37, p.157]

φ̂(ξ) ∼ (1 + ‖ξ‖2
2)

−((k+ 1
2
)+ 3

2
),

which makes the tangent kernel Ψ generated from pn,k satisfy NΨ = Hk+ 1
2 (S).

The exact forms of the four RBFs used to generate the tangent kernels Ψ in the numerical experiments
are listed in Table 1. Also included in this table is the corresponding native space of Ψ for each of the RBFs.

RBFs for generating Ψ in the numerical experiments NΨ

M
a
té

rn MA7/2: φ(r) = e−εr
(

1 + (εr) +
2

5
(εr)2 +

1

15
(εr)3

)
H

7
2 (S)

MA9/2: φ(r) = e−εr
(

1 + (εr) +
3

7
(εr)2 +

2

21
(εr)3 + (εr)4

)
H

9
2 (S)

W
en

d
la

n
d

WE3,3: φ(r) =
(
1 − r

δ

)8

+

(
1 + 8

r

δ
+ 25

(r
δ

)2

+ 32
(r
δ

)3
)

H
7
2 (S)

WE3,4: φ(r) =
(
1 − r

δ

)10

+

(
1 + 10

r

δ
+ 42

(r
δ

)2

+ 90
(r
δ

)3

+
429

5

(r
δ

)4
)

H
9
2 (S)

Table 1: The RBFs used for generating the tangent kernels Ψ = Ψdiv + Ψcurl for the numerical examples.
For Matérn, ε > 0 is called the shape parameter while δ > 0 is called the support radius for Wendland.

As is the case with many RBFs, the Matérn and Wendland classes both feature a free parameter (ε and
δ, respectively). The choice for these parameters can have a considerable affect on the stability and accuracy
of the RBF interpolant. However, determining the “optimal” value for either of these parameters is neither
easy nor obvious (cf. [4, 6, 32] in the case of the shape parameter, and [37, Ch. 15], [17, Ch. 5] in the case
of the support radius). In the numerical results that follow, we make no attempt to optimize these values
and fix them at ε = 4 for MA7/2, ε = 8 for MA9/2, δ = 5/3 for WE3,3, and δ = 4/3 for WE3,4. We leave the
investigation of optimal parameter selection for vector SBF interpolation to a separate study.

6.2 Node sets

As in the two previous works [31, 12], we use the the minimum energy (ME) node sets of Womersley and
Sloan [40] for our numerical examples since they have several nice properties. First, both the mesh-norm hX
and the separation radius qX for these node sets decay approximately uniformly like the inverse of the square
root of the number of nodes N , i.e. hX , qX ∼ 1√

N
; see Figure 2. This means that the mesh ratio ρX = hX/qX

appearing in the error estimate from Theorems 4 and 5 stays roughly constant as N is increased. Second, the
nodes are not oriented along any vertices or lines, which emphasizes the ability of the vector SBF technique
to handle arbitrary node layouts. Third, many of these node sets are freely available for download on the
web [40].

6.3 Verification of stability estimates

For the MA7/2 and WE3,3 kernels, Corollary 2 predicts the minimum eigenvalue of the vector SBF interpo-
lation matrices AX,Ψ decreases like q5X as qX is decreased. The Corollary similarly predicts that the decrease
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Figure 2: Mesh-norm hX and separation radius qX for minimum energy nodes (ME) of varying sizes N as
indicated by the legend. The dashed line shows is the line 1/

√
N .

in the minimum eigenvalue is q7X for the MA9/2 and WE4,3 kernels. To test these estimates, we construct
the vector SBF interpolation matrices for each of the kernels and for several ME node sets and compute
their corresponding minimum eigenvalue. Figure 3 displays the results on a log-log scale as a function of
the separation radius of the ME node sets. Also included in the figure are the predicted rates of decrease
(as dashed and dash-dotted lines). It is clear from the figure that Corollary 2 provides are very accurate
estimate on the behavior of the minimum eigenvalue of AX,Ψ.

We also numerically verified the estimates from Corollary 1 on the minimum eigenvalue of just the curl-
free SBF interpolation matrix. However, we have not included them here since they are very similar to the
div-free results from [12].
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Figure 3: Minimum eigenvalue of the vector SBF interpolation matrices AX,Ψ as a function of the separation
radius qX of the ME node sets (note the log-log scale). The dashed line is the predicted estimate from
Corollary 2 for the kernels based on MA 7

2
and WE3,3, while the dash-dotted line is the prediction for the

kernels based on MA 9
2

and WE3,4.
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6.4 Verification of error estimates

To verify the error estimates from Corollary 3, and Theorems 4 and 5, we use three vector fields of varying
smoothness. All the fields are generated using “stream functions” and “velocity potentials” so that we can
easily separate the divergence-free and curl-free parts of the field. Letting the scalar functions s and v denote
the respective stream function and velocity potential, each of the vector fields will be given by

f = Ls︸︷︷︸
fdiv

+∇∗v︸︷︷︸
fcurl

.

Recall from Section 2 that L and ∇∗ denote the surface curl and surface gradient, respectively. Thus, Ls is
divergence-free, while ∇∗v is curl-free.

In the descriptions of the stream functions and velocity potentials below, we use a mix of intrinsic
(spherical) and extrinsic (Cartesian) coordinates. For the former, we let λ denote the longitudinal direction
(−π ≤ λ < π) and θ denote the latitudinal direction, which we measure from the equator (i.e. −π/2 ≤ θ ≤
π/2). For the latter, we let x be a point on the sphere with Cartesian components (x1, x2, x3). We also
remind the reader that the operators L and ∇∗ can easily be expressed as Qx∇ and Px∇, respectively, where
∇ is the gradient operator in R3 and Qx and Px are defined in Section 2.4.

To measure the error, vector SBF interpolants are constructed for each of the three vector fields based
on samples of these fields at several different ME node sets. These interpolants and target functions are
then evaluated and compared at a much denser set of points. For these evaluation points we use the 16,641
minimum determinant (MD) node set node set of Womersley and Sloan [40], which provide a quasi-uniform
discretization of the sphere. Finally, the (relative) discrete ℓ2-norm of the error, which is based on the inner
product (2), is computed using the surface-quadrature weights that are included with the 16,641 MD node
set. This will give a similar measure of the error as the continuous Sobolev norms in Corollary 3, and
Theorems 4 and 5 for the case of µ = 0 [29].

Field 1. The stream function and velocity potential for the first field are linear combinations of spherical
harmonics and are meant to generate realistic synoptic scale meteorological wind fields. The definition of
spherical harmonics we adhere to is

Yℓ,m(x) =

√
(2l + 1)

4π

(ℓ− |m|)!
(ℓ+ |m|)!Pℓ,|m|(x3)





cos

(
|m| tan−1

(
x2

x1

))
, m = 0, . . . , ℓ

sin

(
|m| tan−1

(
x2

x1

))
, m = −ℓ, . . . ,−1

,

where Pℓ,m are the associated Legendre functions.
The stream function is given by

s1(x) = − 1√
3
Y1,0(x) +

8
√

2

3
√

385
Y5,4(x) (20)

which is known as a Rosby-Haurwitz wave and is an analytic solution to the nonlinear barotropic vorticity
equation on the sphere [16, pp.453–454]. It is also used as the initial condition for one of the de facto test
cases for the shallow water wave equations on the sphere [39].

For the velocity potential, we use

v1(x) =
1

25
[Y4,0(x) + Y6,−3(x)] .

The order of the spherical harmonics and coefficients here are chosen somewhat arbitrarily, what is desired
is a curl-free field with an interesting pattern, but of less strength since for synoptic scale motions of the
atmosphere, the wind is nearly nondivergent [16, pp.386]. The fields generated by each of these scalar
potentials, as well as the combined field f are plotted in Figure 4 (a).

Since f is C∞(S2), we expect the “doubling” estimate from Corollary 3 to apply to the vector SBF
interpolants. Similarly, we expect the second result from Theorem 5 to apply to the error estimate on the
vector SBF recovery of the decomposition. For the MA7/2 and WE3,3 kernels, the error is expected to
decrease like h7

X for the combined and decomposed fields, while it is expected to decrease like h9
X in case
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of the MA9/2 and WE3,4 kernels. In Figure 5(a), the relative ℓ2 errors for the combined and decomposed
fields is displayed in a sequence of three plots. The predicted results for each field are also displayed (see the
dashed and dashed-dotted lines) and a very good agreement with the actual errors is clear.

Field 2. For the second field we again use the Rosby-Haurwitz wave (20) as the stream function, while
we use a linear combination of compactly supported functions for the velocity potential. For the compactly
supported functions we use cubic B-splines, which can be defined as follows. Let x and xc be points on the
unit sphere, where xc has spherical coordinates (θc, λc), and define the (Euclidean) distance from x to xc as
r =

√
2 − 2x · xc). Then

f(x;σ, θc, λc) =
σ3

12

4∑

j=0

(−1)j
(

4

j

) ∣∣∣∣r −
(j − 2)

σ

∣∣∣∣
3

,

is a cubic B-spline in r with center xc (or (θc, λc)) and is positive for |r| < 2/σ and zero elsewhere. We use
the following combinations of f for the velocity potential:

v2(x) =
1

8
f(x; 10/2, π/6, 0)− 1

7
f(x; 3, π/5,−π/7) +

1

9
f(x; 10/2,−π/6, π, 2)− 1

8
f(x; 3,−π/5, π/3)

As explained in [12], f is in the Sobolev space Hτ (S2) for all τ < 4. Thus, the curl-free field generated by

v2 is in Hβ
curl(S

2) and the combined field f is in Hβ(S2) for all β < 3. Figure 4 (b) displays the combined
field 2, as well as the fields generated by each of the scalar potentials.

For this field, the estimates from Theorems 4 and 5 apply to the vector SBF interpolant and its decom-
position, respectively. These theorems predict that the errors for MA7/2 and WE3,3 should decrease like

ρ
1/2
X h3

X and like ρ
3/2
X h3

X for the MA7/2 and WE3,3 kernels. However, since the mesh ratio ρX is kept nearly
constant as the resolution is increased, the dependence on ρX will not be evident. The actual relative ℓ2
errors for all four of the kernels are displayed in Figure 5(b). It is again clear that the predicted results are
closely aligned with the true results. It is also interesting to note that although the divergence-free field is
infinitely smooth, we see that the error does not decrease faster than what the smoothness of the sampled
field allows.

Field 3. Let xc ∈ S2 have spherical coordinates (θc, λc), and let t = x · xc and a = 1 − t. Define

g(x; θc, λc) = −1

2

[(
3t+ 3

√
2a3/2 − 4

)
+ (3t2 − 4t+ 1) log(a) + (3t− 1)a log

(√
2a+ a

)]
.

This function is referred to as the “spherical spline” of order 2 and is in the Sobolev space Hτ (S2) for all
τ < 3 [12].

The stream function for the third field is defined using g as follows:

s3(x) =

∫ θ

−π/2
sin14(2ξ)dξ − 3g(x;π/4,−π/12),

where θ is the latitudinal coordinate of x. Since g controls the smoothness of s3, the divergence-free field
generated by s3 is in Hβ

div(S
2), for all β < 2. This field models a low pressure system in a jet stream that

is symmetrical about the equator and is similar to the wind field used in Test Case 4 of [39], although our
field is of much less smoothness.

The velocity potential is also defined using g as follows:

v3(x) =
5

2
g(x;π/4, 0)− 7

4
g(x;π/6, π, 9) − 3

2
g(x; 5π/16, π/10).

The curl-free field generated from v is similarly in Hβ
curl(S

2), for β < 3. The combined field generated by v
and s will thus be in Hβ(S2), for β < 3. This field and its two components are displayed in Figure 4 (c).

Theorems 4 and 5 also apply to the respective vector SBF interpolant and its decomposition. The

predicted decrease in the errors for the MA7/2 and WE3,3 kernels is ρ
3/2
X h2

X and is ρ
5/2
X h2

X for MA7/2 and
WE3,3. Like Field 2, however, the dependence on ρX not be evident. Figure 5(c) displays the actual relative
ℓ2 errors for all four of the kernels. As with the previous two fields, it is again clear that the true results
match the predicted ones very well.
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7 Concluding remarks

We have introduced a new numerical technique for fitting and decomposing a tangent vector field on S2 using
RBFs. The method can be used for both scattered and gridded data and suffers from no pole singularities.
In the case of interpolation, we have presented results on the stability and approximation properties of the
technique. For stability, we have obtained optimal estimates on the spectral condition number of the inter-
polation matrices involved in the method, and verified these estimates numerically. For the approximation
properties, we have obtained Sobolev estimates on the interpolant and its decomposition for vector fields in
the underlying native space of the tangent kernels, smoother than the native space, and in the very impor-
tant case of fields too rough for the native space. We have again presented numerical results verifying these
estimates using vector fields with similar characteristics to those of synoptic scale horizontal winds.

We conclude with some remarks on the computational cost of the method. To determine the interpolation
coefficients for N samples of a vector field, the 2N -by-2N linear system (14) must be solved. For globally
supported kernels, this system will be dense and thus direct methods for inverting it (as was used in this
study) will only be practical for a moderate size N . For the compactly supported kernels, the linear system
(14), can be made sparse and thus computationally cheaper to invert. However, as is well known in the RBF
literature, one must be careful in balancing the goodness of fit with the support of these basis functions [37,
p. 185]. Iterative methods for inverting the linear systems, such as Krylov subspace methods [33], will only
be practical for large data sets if the matrix vector products can be computed efficiently (i.e. in O(N) or
O(N logN) operations) and if a good preconditioner is used. These computational issues are also prevalent
in standard RBF interpolation methods and much work has gone into successfully overcoming them (cf. [37,
Ch. 15] and the references therein). An obvious first step in addressing the computational deficiencies of
the present method for large data sets is to use these already established techniques.
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Combined = Div. Free + Curl Free

‖f‖∞ = 5.7 · 10−1 ‖fdiv‖∞ = 5.6 · 10−1 ‖fcurl‖∞ = 1.4 · 10−1

(a) Field 1

‖f‖∞ = 8.5 · 10−1 ‖fdiv‖∞ = 5.6 · 10−1 ‖fcurl‖∞ = 5.7 · 10−1

(b) Field 2

‖f‖∞ = 1.3 · 100 ‖fdiv‖∞ = 1.2 · 100 ‖fcurl‖∞ = 5.7 · 10−1

(c) Field 3

Figure 4: (a)–(c) The vector fields used in the numerical examples. The first column is the field that is
sampled for the interpolation procedure. All plots are orthographic projections of the fields sampled at
N = 1849 ME nodes and displayed from the following (θ, λ) viewpoint: (a) (0, 0), (b) (0, π/9), (c) (π/18, 0).
For displaying purposes, each field has been normalized by its max norm.
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Figure 5: (a)–(c) Relative ℓ2-errors as a function of the mesh-norm hX of the ME node sets for the vector
decomposed RBF interpolants to the vector fields shown in Figure 4 (a)–(c). The dashed and dash-dotted
lines in each figure are defined by the plot legend and are included for comparison purposes with the theo-
retical results. The vertical limits on each row are the same and both the horizontal and vertical scales are
logarithmic.
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