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Abstract. We present a new high-order, local meshfree method for numerically solving reaction5
diffusion equations on smooth surfaces of co-dimension one embedded in Rd. The novelty of the6
method is in the approximation of the Laplace-Beltrami operator for a given surface using Hermite7
radial basis function (RBF) interpolation over local node sets on the surface. This leads to compact8
(or implicit) RBF generated finite difference (RBF-FD) formulas for the Laplace-Beltrami operator,9
which gives rise to sparse differentiation matrices. The method only requires a set of (scattered) nodes10
on the surface and an approximation to the surface normal vectors at these nodes. Additionally, the11
method is based on Cartesian coordinates and thus does not suffer from any coordinate singularities.12
We also present an algorithm for selecting the nodes used to construct the compact RBF-FD formulas13
that can guarantee the resulting differentiation matrices have desirable stability properties. The14
improved accuracy and computational cost that can be achieved with this method over the standard15
(explicit) RBF-FD method are demonstrated with a series of numerical examples. We also illustrate16
the flexibility and general applicability of the method by solving two different reaction diffusion17
equations on surfaces that are defined implicitly and only by point clouds.18
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1. Introduction. Global radial basis function (RBF) methods are quite popular21

for the numerical solution of various partial differential equations (PDEs) due to22

their ability to handle scattered node layouts, their simplicity of implementation,23

and their potential for spectral accuracy for smooth problems. These methods have24

been successfully applied to the solution of PDEs in various geometries in R2 and R325

(e.g., [11,16]), including spherical domains (e.g. [15,26,41]), and more general surfaces26

embedded in R3(e.g. [25, 35]).27

When high orders of algebraic accuracy are sufficient for a given problem, or if the28

solutions to the problem are expected to only have finite-smoothness, RBF generated29

finite difference (RBF-FD) formulas are an attractive alternative to global RBFs as30

they perform better in terms of accuracy per computational cost [16]. These formulas31

are generated from RBF interpolation over local sets of nodes (stencils) so that the32

resulting differentiation matrices are sparse like in the standard FD method. In con-33

trast to standard FD methods, however, the RBF-FD method can naturally handle34

irregular geometries and scattered node layouts. Additionally, their locality makes35

them more flexibility in terms of local refinement strategies than global RBF meth-36

ods. The strength of the RBF-FD method has been leveraged to solve problems on37

planar domains, e.g., [5,6,38,39,42], the surface of a sphere [14,18], and more recently,38

very general surfaces represented solely by point clouds and normal vectors [37].39

It is natural to view these two classes of RBF methods as extensions of classical40

methods to scattered nodes and irregular geometries. The global RBF method for41

surface PDEs in [25] may be viewed as an extension of polynomial based (or Fourier42

based) pseudospectral methods to surfaces, while the RBF-FD method presented43
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in [37] may be viewed as an extension of standard, polynomial based FD methods to44

surfaces. In this work, we turn our attention to the extension of a third important45

class of classical methods to surfaces: the so-called compact, implicit, or Hermite FD46

methods, first introduced by Collatz [8]. We use the acronym HFD for these schemes47

to avoid the obvious confusion with CFD, and because they will ultimately be based48

on Hermite interpolation.49

The goal of HFD methods is to solve a given PDE numerically by computing more50

accurate approximations to the differential operators in the PDE. In these schemes,51

this improved accuracy is obtained by using additional information from the PDE52

itself, rather than increasing the stencil size, as is the usual way to increase the accu-53

racy with standard (or explicit) FD methods. HFD schemes are thus typically more54

computationally efficient than standard FD schemes, as they can obtain higher accu-55

racy and resolution for the same stencil size [30]. Further, the differentiation matrices56

obtained from HFD formulas often have desirable properties such as diagonal domi-57

nance, leading to both enhanced numerical stability and faster convergence of iterative58

methods used in solving the sparse linear systems that arise when using these matrices59

to discretize a PDE. While HFD schemes have already been successfully generalized to60

scattered node layouts [42], the application of these schemes to the solution of PDEs61

on surfaces presents significant challenges due to the presence of surface differential62

operators. In this article, we overcome those challenges and present a new RBF-HFD63

scheme for the solution of reaction-diffusion equations on surfaces.1 The resulting64

method uses Cartesian coordinates, thereby avoiding the singularities typically asso-65

ciated with intrinsic coordinate systems. Further, our new method only uses nodes on66

the surface in consideration, making it more computationally efficient than embedded67

narrow-band methods that solve the PDE in a narrow-band in the embedding space68

(e.g., [31, 35]). Finally, the RBF-HFD formulas require fewer nodes than the RBF-69

FD method presented in [37] for the same accuracy, while also possessing improved70

stability properties.71

The remainder of the paper is organized as follows. In Section 2, we briefly review72

the formulation of surface differential operators in Cartesian coordinates. Section 373

outlines Hermite RBF interpolation on scattered node sets in Rd. Section 4 describes74

how to use approximations to the Hermite RBF interpolants to generate RBF-HFD75

weights for approximating the surface Laplacian, and also how these can be arranged76

into sparse differentiation matrices. We follow this in Section 5 with a brief discus-77

sion of how to use these differentiation matrices in a method-of-lines formulation for78

numerically solving forced diffusion equations on surfaces. In Section 6, we discuss79

the stability of our method by studying the Gershgorin sets associated with the eigen-80

values of our differentiation matrices. In Section 7, we numerically demonstrate the81

accuracy and efficiency of our method for the forced scalar diffusion equation on two82

different surfaces. We also present a few applications of our method to two species re-83

action diffusion equations on implicitly defined surfaces and surfaces defined by point84

clouds, which have relevant biological applications. We conclude our paper with a85

summary and discussion of future research directions in Section 8.86

2. Review of Differential Geometry. While the standard way of expressing87

differential operators on surfaces is through the use of intrinsic coordinates, covari-88

ant derivatives and metric tensors [4], we instead choose to formulate these operators89

entirely in Cartesian (or extrinsic) coordinates, as this avoids any singularities asso-90

1Throughout this paper, we will use the terms surface or manifold to refer to embedded subman-
ifolds of codimension one in Rd with no boundary, and focus on the specific case of d = 3.
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ciated with intrinsic coordinate systems. Consider the standard gradient operator in91

R3, ∇ =
[
∂x ∂y ∂z

]T
. If we apply this to a differentiable function f at a point92

x = (x, y, z) on the surface M and then project the resulting vector into the tangent93

space of the surface, then this gives the surface gradient of f , which we denote as94

∇Mf . Mathematically, this can be accomplished as follows. Let n =
[
nx ny nz

]T
95

be the unit normal vector to M at x, then96

∇Mf = ∇f − n(n · ∇f) = ∇f − nnT (∇f).9798

Thus, the surface gradient operator can written entirely in Cartesian coordinates as99

∇M := ∇− nnT∇ = (I − nnT )︸ ︷︷ ︸
P

∇,100

101

where I is the 3-by-3 identity matrix. P is a projection operator that takes a vector102

field in R3 sampled at a point x on the surface and projects it onto the tangent plane103

to the surface at x. An explicit expression for this operator is given by104

P =

(1− nxnx) −nxny −nxnz
−nxny (1− nyny) −nynz
−nxnz −nynz (1− nznz)

 =
[
px py pz

]
,(1)105

106

where px, py and pz are vectors representing the projection operators in the x, y107

and z directions, respectively. We can now use px, py and pz to obtain the following108

(more convenient) expression for ∇M:109

∇M := P∇ =

px · ∇
py · ∇
pz · ∇

 =

GxGy
Gz

 ,(2)110

111

where Gx, Gy and Gz are the components of the surface gradient along each of the112

coordinate directions in R3. Now, the surface Laplace (Laplace-Beltrami) operator113

∆M can be obtained by applying the surface divergence to the surface gradient [25].114

This can naturally be expressed using Gx, Gy, and Gz as115

∆M := ∇M · ∇M = (P∇) · P∇ = GxGx + GyGy + GzGz.(3)116117

This gives an explicit expression for the surface Laplace operator entirely in Cartesian118

components. We will use this expression in our numerical approximation to the surface119

Laplacian.120

3. Hermite Interpolation with RBFs. We now review Hermite interpolation121

with RBFs, a technique essential to deriving the new RBF-HFD scheme outlined in122

the next section. Let Ω ⊆ Rd, and φ : Rd × Rd → R be a scalar-valued radial kernel,123

i.e., φ(x,y) := φ(‖x− y‖) for x,y ∈ Ω, where ‖ · ‖ is the standard Euclidean norm in124

Rd. Let L be a linear functional and suppose we are given samples of a continuous125

target function f at a set of distinct nodes X = {xi}ni=1 ⊂ Ω and samples of Lf at126

a set of distinct nodes X̃ = {x̃j}mj=1 ⊂ Ω. Then we consider the following Hermite127

RBF interpolant to the this data, proposed first by Wu [43]:128

Iφf(x) =

n∑
i=1

ciφ(x,xi) +

m∑
j=1

djL2φ(x, x̃j) + α.(4)129

130

3

This manuscript is for review purposes only.



Here we have used of notation L2 to mean that L is applied to φ with respect to its131

second argument. Later we will similarly use L1 to mean that L is applied to φ with132

respect to its first argument. The expansion coefficients {ci}ni=1 and {dj}mj=1 in (4)133

are determined by enforcing the (Hermite) interpolation conditions134

Iφf |X = f |X ,(5)135

L (Iφf)|X̃ = (Lf)|X̃ ,(6)136137

while the constant α is obtained by enforcing the moment condition
∑n
i=1 ci = 0.138

These conditions can be represented as the following block linear system:139  A B2 e
B1 C 0
eT 0T 0


︸ ︷︷ ︸

AH

cd
α

 =

 fLf
0

 ,(7)140

141

where142

Ai,j = φ(xi,xj), i, j = 1, . . . , n,143

(B2)i,j = L2φ(xi, x̃j), i = 1, . . . , n, j = 1, . . . ,m,144

(B1)i,j = L1φ(x̃i,xj), i = 1, . . . ,m, j = 1, . . . , n,145

Ci,j = L1L2φ(x̃i, x̃j), i, j = 1, . . . ,m,146

ei = 1, i = 1, . . . , n.147148

Because φ is radially symmetric we have that φ(x, x̃) = φ(x̃,x), so that L2φ(x, x̃) =149

L1φ(x̃,x). This means that A = AT , C = CT , and B2 = BT1 so that the matrix150

AH is symmetric. If φ is, for example, positive definite or order one conditionally151

positive definite, then under very mild conditions on L, the linear system (7) is non-152

singular [32,43].153

We will also make use of regular RBF interpolation, which consists only of in-154

terpolating function values, in the subsequent section. These interpolants are simply155

given by (4) with m set equal to zero and the constant α omitted, i.e.,156

Iφf(x) =

n∑
i=1

ciφ(x,xi).(8)157

158

In this case, we only enforce the conditions (5), which can be represented by the linear159

system160

(9) Ac = f .161

We will use the subscript R to denote the linear system for the regular interpolant as162

opposed to the subscript H in (7) for the linear system associated with the Hermite163

interpolant.164

In this study, the interpolation nodes X and “functional nodes” X̃ lie on an165

embedded lower dimensional surface Ω = M in Rd. However, we will still use the166

standard Euclidean distance in Rd for computing φ(x, x̃) = φ(‖x − x̃‖) in Equation167

(4) (i.e., straight line distances rather than distances intrinsic to the surface). A the-168

oretical foundation for RBF interpolation on surfaces with the straight-line distance169

measure is given in [23], along with proofs of favorable error estimates.170
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While it is possible to use any (conditionally) positive-definite kernel within the171

RBF-FD and RBF-HFD method (e.g., [3, 9, 14, 38, 42]), we use the Gaussian (GA)172

kernel, which is positive definite in Rd, for any d. All infinitely smooth kernels feature173

a shape parameter ε such that large values of ε make the kernels peaked, while smaller174

ε values make them flat. In the limit as ε → 0, Gaussian RBF interpolants to data175

converge to (multivariate) polynomial interpolants in Rd [10,28,36], and to spherical176

harmonic interpolants on the sphere S2 [20]. While smaller values of ε generally lead177

to greater accuracy for smooth target functions, [21, 28], the interpolation matrix178

in Equation (7) becomes increasingly ill-conditioned as ε → 0 (see, e.g., [22]). Some179

stable algorithms have been developed for bypassing this ill-conditioning [12,17,19–21],180

but these algorithms typically break down when the data sites lie on a submanifold181

M ⊂ Rd, as in the present study, due to nodes being non-unisolvent with respect to182

polynomials in Rd. While some strategies have recently been undertaken to resolve183

them in Rd [29], a robust approach is not yet available for surfaces.184

4. RBF-HFD formulas for the surface Laplacian. Let Ξ = {ξk}Nk=1 denote185

a set of (scattered) node locations on a surface M of dimension two embedded in R3186

and suppose f : M → R is some differentiable function sampled on Ξ. Our goal187

is to approximate ∆Mf |Ξ with HFD-style local approximations to the operator ∆M.188

Without loss of generality, let the node where we want to approximate ∆Mf at be189

ξ1, and let ξ2, . . . , ξp be the p − 1 nearest neighbors to ξ1, measured by Euclidean190

distance in R3. We refer to ξ1 and its p− 1 nearest neighbors as the neighborhood of191

ξ1 on the surface and denote this neighborhood as S1 = {ξ`}
p
`=1; this neighborhood192

will comprise the candidate nodes that make up the HFD stencil for ξ1. We seek an193

approximation to ∆Mf at ξ1 that involves a linear combination of the values of f and194

∆Mf over some subset of nodes from S1 of the form195

(10) (∆Mf)
∣∣
x=ξ1

≈
∑
i∈J

wif(ξi) +
∑
j∈J̃

w̃j(∆Mf)
∣∣
x=ξj

,196

where J and J̃ denote index sets of size n ≤ p and m < p, respectively, into S1 for the197

explicit and the implicit (or Hermite) part of the stencil, respectively. We will assume198

that 1 ∈ J , but 1 /∈ J̃ (otherwise a trivial solution would exist). Using the notation of199

the previous section, we will let the n nodes indicated by J be denoted by X = {xi}ni=1200

and the m nodes indicated by J̃ be denoted by X̃ = {x̃j}mj=1. Additionally, we always201

set x1 = ξ1. Using this notation we can rewrite (10) as202

(11) (∆Mf)
∣∣
x=x1

≈
n∑
i=1

wif(xi) +

m∑
j=1

w̃j(∆Mf)
∣∣
x=x̃j

.203

The weights {wi}ni=1 and {w̃j}mj=1 in this approximation will be computed using RBFs,204

and will be referred to as RBF-HFD weights.205

4.1. Computation of the weights from the Hermite interpolant. The206

method from [42] determines the RBF-HFD weights in (11) from the Hermite RBF207

interpolant (4) constructed with L = ∆M. To compute the weights consider the208

problem of applying ∆M to the interpolant (4) and evaluating it at x1 to approximate209

∆Mf
∣∣
x=x1

. The resulting approximation would be exact whenever f is any of the210

functions φ(x,xi), i = 1, . . . , n, L2φ(x, x̃j) = ∆M,2φ(x, x̃j), j = 1, . . . ,m, or a non-211

zero constant (since the interpolant is exact for these f). Thus, the weights {wi}ni=1212
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and {w̃j}mj=1 are the values that make (11) exact for these values of f . This can be213

written as the following linear system214

(12)

 A B e
BT C 0
eT 0T 0


︸ ︷︷ ︸

AH

ww̃
α

 =

 ∆M,1φ(x,xi)
∣∣
x=x1

∆M,1∆M,2φ(x, x̃j)
∣∣
x=x1

0

 ,215

where the block matrices A and C are the same as those given in the Hermite inter-216

polation matrix (7), B = B2 = BT1 in this same matrix (recall that the matrix in (7)217

is symmetric), ∆M,1 = L1 and ∆M,2 = L2, and i = 1, . . . , n and j = 1, . . . ,m to form218

block vectors of length n and m in the right hand side. Note that the constant α is219

not used for anything in the actual RBF-HFD formula.220

The issue with using (12) for determining the RBF-FD weights is that one has221

to explicitly compute ∆M,1φ(x, x̃j) and ∆M,1∆M,2φ(x, x̃j). As discussed in Section 2,222

constructing ∆M requires having explicit information about the underlying surface,223

such as an analytical expression for the surface normal vectors. Even in cases where224

these are known, the resulting formulas for computing ∆M,1φ and ∆M,1∆M,2φ are225

likely to be quite complex. Moreover, we are interested in surfaces that are defined226

by point clouds and where only numerical representations of the normal vectors are227

available. Thus, constructing the system (12) analytically will not be possible. How-228

ever, it is possible to construct an approximation to the entries of this system using229

the regular RBF-FD method from [37], which is based on iterated differentiation (see230

also [24]). This is the approach we take.231

4.2. Computation of the weights from iterated differentiation. The first232

goal is to compute approximations of the entries in BT in (12) and the entries of the233

first vector block in the right hand side of this equation. We state the entries of BT234

explicitly as it will help elucidate the discussion of their approximation:235

BT =

∆M,1φ(x̃1,x1) · · · ∆M,1φ(x̃1,xn)
...

. . .
...

∆M,1φ(x̃m,x1) · · · ∆M,1φ(x̃m,xn)

 .(13)236

237

We compute these approximations by constructing an approximation to ∆M using238

discrete approximations to Gx, Gy, and Gz in (2) computed from the standard RBF239

interpolant (8) over the candidate stencil nodes S1 = {ξk}
p
k=1. To this end, consider,240

for example, applying Gx to the interpolant Iφf in (8) based on the nodes in S1 (here241

the target function f is not important) and then evaluating it at S1:242

(GxIφf(x))
∣∣
x=ξi

=

p∑
j=1

cj
(
Gxφ(x, ξj)

)∣∣
x=ξi︸ ︷︷ ︸

Dx
ij

, i = 1, . . . , p.(14)243

244

We can rewrite (14) so that it explicitly depends only on the vector of samples f
∣∣
S1

245

using (9) as follows:246

(15) (GxIφf)
∣∣
S1

= Dxcf = DxA−1
R f

∣∣
S1

=: Gxf
∣∣
S1
.247

Here Gx is a p-by-p differentiation matrix that represents the RBF approximation to248

the x-component of the surface gradient operator over the set of nodes in S1. Now,249
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letting250

Dy
i,j =

(
Gyφ(x, ξj)

)∣∣
x=ξi

and Dz
i,j =

(
Gzφ(x, ξj)

)∣∣
x=ξi

, i, j = 1, . . . , p,(16)251
252

we can obtain similar approximations to the y- and z-components of the surface253

gradient operator on S1 as254

(GyIφf)
∣∣
S1

= DyA−1
R f

∣∣
S1

=: Gyf
∣∣
S1
,(17)255

(GzIφf)
∣∣
S1

= DzA−1
R f

∣∣
S1

=: Gzf
∣∣
S1
.(18)256

257

To obtain an approximation to ∆M at the candidate stencil nodes S1, we mimic258

the continuous formulation of the surface Laplacian in (3), replacing the continuous259

operators Gx, Gy, and Gz with the differentiation matrices Gx, Gy, and Gz, respec-260

tively. This gives the following differentiation matrix for approximating the surface261

Laplacian at the nodes S1:262

LM,1 = GxGx +GyGy +GzGz263

=
(
DxA−1

R Dx +DyA−1
R Dy +DzA−1

R Dz
)︸ ︷︷ ︸

B̂T

A−1
R .(19)264

265

When applying LM,1 to a vector of samples of a target function f taken over S1, this266

is equivalent to interpolating the target function with the regular RBF interpolant267

(8), computing the components of the surface gradient of the interpolant, then inter-268

polating each of these components again using (8), applying the surface divergence,269

then evaluating this at the nodes in S1. This is a type of iterated derivative approxi-270

mation [24] and has the advantage of not needing the explicit formulas for the normal271

vectors (or their derivatives) to the surface M.272

Recall that the node sets X and X̃ are subsets of S1 given by the index sets J273

and J̃ , respectively (cf. (10)). Thus, to approximate the (i, `) entry, ∆M,1φ(x̃i,x`),274

of BT in (13), we can first apply LM,1 to the vector of samples of φ(x,x`) at S1,275 [
φ(ξ1,x`) φ(ξ2,x`) · · · φ(ξp,x`)

]T
,(20)276277

which gives a vector containing approximations to ∆M,1φ(ξk,x`), k = 1, . . . , p. The278

approximation to ∆M,1φ(x̃i,x`) is then given by the row in this vector corresponding279

to the ith value in J̃ (which we denote by J̃i). Note, however, that the vector (20) is280

just the J` column of AR in (15), so that the approximation to ∆M,1φ(x̃i,x`) obtained281

from applying LM,1 to (20) is just given by the J̃i and J` column of B̂T in (19). Thus,282

all entries in BT in (13) can be similarly obtained directly from the rows and columns283

or B̂T using the index sets J and J̃ . Additionally, the vector in the first block of the284

right hand side of (12) can be approximated from B̂T ; in this case, from the first row285

of B̂T and from the columns corresponding to Ji, i = 1, . . . , n.286

The second goal is to compute approximations to the entries of C in (12) and the287

entries of the second vector block in the right hand side of this equation. We give the288

entries of C explicitly to again elucidate the discussion:289

C =

∆M,1∆M,2φ(x̃1, x̃1) · · · ∆M,1∆M,2φ(x̃1, x̃m)
...

. . .
...

∆M,1∆M,2φ(x̃m, x̃1) · · · ∆M,1∆M,2φ(x̃m, x̃m)

 .(21)290

291
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To approximate the operator ∆M,1∆M,2 we again use iterated differentiation involv-292

ing the differentiation matrices Gx, Gy, and Gz. Using the idea of (19), we can293

approximate ∆M,2 at the candidate stencil nodes S1 using the differentiation matrix294

LM,2 =
(
(Dx)TA−1

R (Dx)T + (Dy)TA−1
R (Dy)T + (Dz)TA−1

R (Dz)T
)︸ ︷︷ ︸

B̂

A−1
R ,(22)295

296

where Dx, Dy, and Dz are given by (14) and (16). We then approximate ∆M,1∆M,2297

at the nodes in S1 as298

LM,1LM,2 =
(
B̂TA−1

R B̂
)

︸ ︷︷ ︸
Ĉ

A−1
R .(23)299

300

Using similar arguments as above for extracting approximations to the elements of BT301

from B̂T , we can extract approximations to the elements of C from Ĉ. For example,302

entry Ci,` can be approximated by the entry in the J̃i row and J̃` column of Ĉ. The303

elements in the second block vector of the right hand side of (12) can similarly be304

extracted from Ĉ. In practice, B̂ and Ĉ are formed by solving linear systems using305

the Cholesky factorization of AR, instead of computing A−1
R . Note that this ensures306

that Ĉ is symmetric so that the approximation to C will also be symmetric.307

Upon obtaining approximations to the entries of BT and C and the vector in the308

right hand of (12), we substitute these into the system (12) and solve it to obtain309

iterated RBF-HFD weights {w}ni=1 and {w̃}mj=1 to be used in (11).310

For each node ξk ∈ Ξ, k = 1, . . . , N , we repeat the above procedure of finding311

its p − 1 nearest neighbors (candidate stencil nodes Sk), selecting index sets for the312

explicit and implicit stencils, computing approximations to the p-by-p submatrices313

B̂T and Ĉ, and extracting the entries from these matrices to use for solving for the314

weights in (12). These weights are then arranged into two sparse N -by-N matrices LΞ315

and L̃Ξ for approximating the surface Laplacian over all the nodes in Ξ (see Section316

5 for how LΞ and L̃Ξ are used for solving a PDE). Each row of LΞ has n non-zero317

entries and each row of L̃Ξ has m non-zero entries.318

The computational cost of computing the weights for node ξk is O(p3), and there319

are N such stencils, so that the total cost of computing the entries of LΞ and L̃Ξ320

is O(p3N). In our application of the RBF-HFD method, the dominant O(p3) cost321

for each ξk can also depend on m and n as we use a Greedy algorithm to select the322

index sets J and J̃ that give weights with desirable properties as discussed in Section323

4.4. In practice, p � N and would typically be fixed as N increases, so that the324

total cost scales like O(N). Furthermore, the weights for one node can be computed325

independently from the others and is thus an embarrassingly parallel computation.326

In contrast, the method from [25], requires O(N3) operations and results in a dense327

differentiation matrix. However, the accuracy of this global method is better than the328

local RBF-HFD approach.329

4.3. Choosing the candidate stencil nodes. Increasing the size p of the330

candidate stencil nodes in the iterated differentiation improves accuracy of the ap-331

proximations to BT and C described in the previous section, but also increases the332

computational cost and worsens the conditioning of the linear system in (19). The-333

oretically, the smallest possible candidate stencil would simply include every stencil334

node used in the RBF-HFD formula (11). However, this choice will not lead to ac-335

curate weights. Numerical experiments indicate that the candidate stencil should336

contain at least n+m nodes in order to obtain stable and accurate weights.337
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In the flat basis limit, as the shape parameter goes to zero, RBF interpolants, in338

many cases, reproduce certain polynomial interpolants [10]. Wright and Fornberg [42]339

provided evidence that the weights obtained from Hermite RBF interpolants in this340

limit are identical to classical compact weights that are exact for polynomials. For the341

sphere, it is natural to suppose that the Hermite weights would become exact for the342

spherical harmonics. This is indeed the case, if the neighborhood size is sufficiently343

large, which is demonstrated in Fig. 1. Let the residual for an example stencil on the344

sphere be denoted345

(24) r =

n∑
i=1

wiY (xi) +

m∑
j=1

w̃j(∆MY )
∣∣
x=x̃j

− (∆MY )
∣∣
x=x1

,346

where Y is a spherical harmonic. Shown in the plot in Fig. 1 is the maximum absolute347

value of the residual, where the maximum is taken over the first n + m spherical348

harmonics. For p� n+m, the weights incur errors of very large magnitude, but the349

error decreases rapidly as p increases. From this plot, we posit that p must consist of350

at least as many nodes as the number of spherical harmonics of one degree higher than351

the degree we wish the weights to be exact for. For instance, if we have n+m = 16352

and we wish the weights to be exact for all spherical harmonics up to third degree (of353

which there are 16), then p must at least be 25.

p

10 15 20 25 30 35 40 45 50

‖
r
‖
∞

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

n = 10,m = 6

n = 11,m = 14

Fig. 1: The maximum absolute value of the residual for differentiating a spherical
harmonic, with the maximum taken over the first n+m spherical harmonics. In this
figure, the weights are computed using variable precision arithmetic and ε = 10−10.
The levelling off of the residual at O(10−20) can be attributed to the choice of ε.

354
Whether the arguments above hold for other surfaces is uncertain, as this depends355

on the polynomial space spanned by the RBF basis in the limit as ε goes to zero.356

Additionally, it may not be of particular interest to explore the flat basis limit in357

practice, as such exploration requires multiple precision arithmetic or a stable method,358

such as RBF-GA [19,29] or RBF-QR [17,20], for computing the weights. The choice359

of p should rather be determined by accuracy and stability concerns.360

4.4. Greedy Algorithm for Stencil Selection. If the node set is near-uniform,361

experiments have shown that a nearest neighbor approach to stencil selection is usu-362

ally sound. However, compact stencils can provide additional properties if the stencil363
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nodes are chosen wisely. A simple greedy algorithm, similar to the one in [42], is364

used for this purpose. For small stencils (n,m ≤ 10), that provide up to fourth order365

convergence, we enforce that all weights in L̃Ξ are positive, that L̃Ξ is diagonally366

dominant, and that all off-diagonal elements in LΞ are positive. By consistency, any367

row sum of LΞ is zero and thus the diagonal elements are negative. This property368

of LΞ, along with the diagonal dominance of L̃Ξ, provides the stability properties369

outlined in Section 6, while imposing positivity of the L̃Ξ-weights ensures that the370

compact weights mimic their lattice-based counterparts. For larger stencils, such371

weights cannot be found, and we must give up the last property.372

The greedy algorithm proceeds in the following way:373

1. For each node ξk, determine the p − 1 nearest neighbors to form Sk and374

compute all matrices necessary to form the approximation to the entries of375

AH and the right hand side in the system (12) as described in Section 4.1.376

2. Compute all combinations of choosing n− 1 nodes from Sk and sort them by377

average distance to ξk. Let {J (i)}imax
i=1 denote the set of index sets obtained.378

3. Repeat step 2 with n− 1 replaced by m and denote this set {J̃ (j)}jmax

j=1 .379

4. Let i = j = 1. Until stencils with suitable weights have been found, repeat380

the following two steps:381

5. Compute w and w̃ from the approximation (12) using the stencils J (i) and382

J̃ (j).383

6. If the weights satisfy the conditions, or i = imax and j = jmax; go to step384

1 and continue with k = k + 1. Else if j = jmax, or if j = 1 and w is not385

diagonally dominant; increase i and let j = 1. Else increase j.386

The rationale behind the second condition in step 6 is that if w is not diagonally387

dominant, numerical experiments have shown that replacing the implicit stencil is388

unlikely to work. For near-uniform nodes and suitable values for the stencil and389

neighborhood sizes, the conditions are met for i = j = 1 for a majority of stencils,390

and the algorithm rarely requires more than 10 iterations in steps 5 and 6.391

5. Using RBF-HFD weights with the method-of-lines. In Sections 7.1392

and 7.2, we use the RBF-HFD discrete approximation to the surface Laplacian in393

the method-of-lines (MOL) to simulate diffusion and reaction-diffusion equations on394

surfaces. We briefly review this technique for the former equation, as its generalization395

to the latter follows naturally.396

The diffusion of a scalar quantity u on a surface with a (non-linear) forcing term397

is given as398

∂u

∂t
= δ∆Mu+ f(t, u),(25)399

400

where δ > 0 is the diffusion coefficient, f(t, u) is the forcing term, and an initial value401

of u at time t = 0 is given.402

Our RBF-HFD method for (25) takes the form403

d

dt
uΞ = δL̃−1

Ξ LΞuΞ + f (t, uΞ) ,(26)404
405

where L̃−1
Ξ LΞ is an RBF-HFD discretization of ∆M over the nodes in Ξ, as described406

above. This is a system of N coupled ODEs and, provided it is stable (see Section 6),407

can be advanced in time with a suitably chosen time-integration method. In contrast408

to an explicit RBF-FD discretization, where L̃Ξ is the identity matrix, both explicit409

and implicit time discretizations will require solving a sparse linear system. The410
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diffusion term is typically treated implicitly in order to allow larger time steps, and411

we have chosen to use a semi-implicit BDF3 method [2], given by412

413

(27)

(
11

6
I − δ∆tL̃−1

Ξ LΞ

)
un+1
X = 3unX −

3

2
un−1
X +

1

3
un−2
X414

+ ∆t
(
3f(tn, unX)− 3f(tn−1, un−1

X ) + f(tn−2, un−2
X )

)
,415416

where the superscript denotes time level. If δ and ∆t are constant in time, we may417

multiply by L̃Ξ to obtain the system418

(28)

(
11

6
L̃Ξ − δ∆tLΞ

)
︸ ︷︷ ︸

RΞ

un+1
X = L̃Ξ{r.h.s. of (27)}419

The matrix RΞ is sparse and well-conditioned, and may be factorized if a sufficient420

amount of memory is available. Another option is to use a Krylov solver with a421

suitable pre-conditioner, for instance an ILU decomposition. The latter might be422

preferable if the time step is adaptive, since the zero-fill ILU pre-conditioner is cheap423

to compute, at least compared to a full LU factorization. The performance of this424

approach is discussed in Section 7.425

6. Stability and Gershgorin Sets. One important reason to favor high-order426

compact stencils over their explicit counterparts is eigenvalue stability. In the clas-427

sical setting, where stencils are symmetric, the structure of the obtained generalized428

eigenvalue problem ensures stability when using any A-stable time stepping scheme.429

Consider Equation (25) with f ≡ 0 and the corresponding compact semi-discretization430

(29)
d

dt
uΞ = L̃−1

Ξ LΞuΞ.431

We wish to prove that any eigenvalue of L̃−1
Ξ LΞ lies in the left half-plane, which is432

a necessary condition for stability. In the following, we will consider the equivalent433

problem of showing that all eigenvalues of the generalized eigenvalue system434

(30) Ax = λBx,435

where A = −LΞ and B = L̃Ξ, lie in the right half-plane.436

A common way to prove stability is to use the Gershgorin circle theorem. For437

instance, if A has zero row sum, positive diagonal and non-positive off-diagonal ele-438

ments, then any eigenvalue of A must have a non-negative real part. We will assume439

that A has these properties, and that B is a strictly diagonally dominant matrix with440

positive diagonal elements. If A and B were Hermitian, these properties would be suf-441

ficient for the eigenvalues of the generalized eigenvalue problem to have non-negative442

real parts. The situation is somewhat more complicated in the non-symmetric case.443

Stewart [40] extended the Gershgorin circle theorem to generalized eigenvalues,444

and proved that any eigenvalue must lie in
⋃
i Γi, where Γi is given by z ∈ C such445

that446

(31) |zbii − aii| ≤
∑
j 6=i

|zbij − aij |,447

where aij and bij denote the elements of A and B, respectively. In contrast to the448

regular Gershgorin theorem, it is quite difficult to determine the values of z that449
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fulfill this inequality. By cleverly applying the the triangle inequality, Kostić and450

co-workers [27] provided an approximate Gershgorin set that can be easily computed.451

Let ri(A) denote the absolute sum of the ith row of A with the diagonal element452

zeroed out. The ith approximate Gershgorin set Γ̂i is given by z ∈ C such that453

|zbii − aii| ≤ |z|ri(B) + ri(A).454

By dividing by bii, which is positive by assumption, we obtain455

(32) |z − aii
bii
| ≤ |z|ri(B)

bii
+
ri(A)

bii
.456

We will let α = aii
bii

and β = ri(B)
bii

, and note that we have ri(A) = aii from the matrix457

properties we assumed. Note also that β < 1 since B is strictly diagonally dominant.458

Approximate Gershgorin sets for α = 1 and various β are shown in Figure 2. In459

particular, note that none of the sets contain any part of the negative real axis. For460

small values of β, the only part of the negative real half-plane that is included in the461

approximate Gershgorin set is a narrow segment along the imaginary axis. In the462

special case where B has non-negative elements, it is typically possible to find stencils463

that provide β < 0.5, which makes the unstable part of the Gershgorin set practically464

insignificant.

Re z

-2 0 2 4 6

I
m

z

-4

-2

0

2

4

Fig. 2: Approximate Gershgorin sets for α = 1 and various values of β. The circle
corresponds to β = 0, and additional curves are given by β = 0.2, 0.4, 0.6 and 0.8,
starting from the innermost to the outermost curve.

465

In practice, the exact Gershgorin sets turn out to be much smaller than the466

approximate ones for the discretizations considered here. Examples are shown in467

Figure 3, where fourth order and sixth order approximations of the Laplace–Beltrami468

operator on the sphere are considered. Note that the regions shown are not the469

(approximate) Gershgorin set, but rather the ith (approximate) Gershgorin set, where470

i is chosen as the row that gives the largest extent in the left half-plane. For the471

fourth order method, the Gershgorin set shown is essentially completely contained in472

the right half-plane.473

7. Numerical Results. The numerical experiments in this section were per-474

formed in Matlab, using node sets generated by DistMesh [33,34], unless otherwise475
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(a) Fourth order method.
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Fig. 3: Generalized eigenvalues of (A,B), and corresponding Gershgorin sets. The
ith approximate Gershgorin set is outlined by a dashed line, and the respective exact
one is given by a solid line, where the index i is chosen to give the largest extent in
the left half-plane of each individual set. The inset shows a magnification about the
origin.

Table 1: The manifolds in the experiments are given by {x, y, z} satisfying F (x, y, z) =
0. For the Red Blood Cell, the parameters are c0 = 0.81

a , c2 = 7.83
a , c4 = −4.39

a and
r0 = 3.91

a with a = 3.39. The parameters for Dupin’s Cyclide are c1 = 2, c2 =

1.9, c3 =
√

0.39 and c4 = 1.

Surface F (x, y, z)

Sphere x2 + y2 + z2 − 1

Torus (1−
√
x2 + y2)2 + z2 − 1

9

Red Blood Cell
(

1− x2+y2

r2
0

)(
c0 + c2

(
x2+y2

r2
0

)
+ c4

(
x2+y2

r2
0

)2
)2

− 4z2

Dupin’s Cyclide (x2 + y2 + z2 − c24 + c22)2 − 4(c1x+ c3c4)2 − 4c22y
2

“Tooth” x8 + y8 + z8 − (x2 + y2 + z2)

noted. For a mathematical description of the manifolds, see Table 1. Example node476

sets are presented in Fig. 4.477

7.1. Parameter Studies. To verify the convergence rate and facilitate compar-478

isons between explicit and implicit finite difference methods, we use the forced heat479

equation with a known analytic solution. We restrict our attention to the surface of480

the sphere and the torus, in order to be able to manufacture exact solutions.481

As in [37], we take the exact solution for the sphere to be482

(33) u(t,x) = e−5t
23∑
k=1

e−10 cos−1(yk·x),483
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Fig. 4: Example node sets for the Red Blood Cell model, Dupin’s Cyclide, and the
“Tooth” model.

where x ∈ S2 and yk, k = 1, . . . , 23, randomly placed points on S2. For the torus, we484

also use the exact solution from [37]:485

(34) u(t, λ, ϕ) = e−5t
30∑
k=1

e−20(1−cos(λ−λk))− 9
4 (1−cos(ϕ−ϕk)).486

Here the solution is stated in the parametric variables (λ, ϕ) ∈ [−π, π]2 for the torus,487

and (λk, ϕk), k = 1, . . . , 30, are taken as randomly chosen values in [−π, π]2. The488

exact parameterization of the torus we use is489

x =

(
1 +

1

3
cos(ϕ)

)
cos(λ), y =

(
1 +

1

3
cos(ϕ)

)
sin(λ), z =

1

3
sin(ϕ).490

491

The forcing terms for the diffusion equations on the two surfaces are computed from492

these exact solutions. Unless otherwise noted, the diffusion equations for both surfaces493

are simulated for 0 ≤ t ≤ 0.2 and the time step is chosen such that spatial errors494

dominate. All time integrations are done using BDF3 and the forcing function is495

evaluated implicitly. We restrict the presentation to the relative `∞-norm of the496

error as the observed convergence rates were the same for the `1-, `2-, and `∞-norms.497

Finally, we let h denote the ‘spacing’ of the nodes in Ξ, and compute this as the498

average distance to the nearest neighbor.499

Shape parameter. Two strategies for the scaling of the shape parameter are com-500

monly used: inversely proportional to the node distance h, or fixed. The former choice501

keeps the condition number of the regular interpolation matrix, here denoted κ(AR),502

constant, but introduces a stationary interpolation error that does not decrease to503

zero in the limit as h goes to zero. A fixed ε gives convergence for all h, but the linear504

systems for computing the weights become ill-conditioned for small h, and convergence505

is lost due to round-off errors. There are workarounds for both of these problems. In506

the stationary interpolation case, it is possible to recover low order convergence by507

adding suitable polynomial terms to the interpolant [13]. On a surface, however, the508

polynomials may themselves introduce ill-conditioning.509

If ε is kept fixed, there are currently two options to circumvent the problem of510

ill-conditioning: stable algorithms or variable-precision arithmetic. The algorithms511

of the former category, such as RBF-GA, RBF-QR, and RBF-CP [17, 19, 21], are512

unfortunately not easily adaptable to Hermite interpolation in the form introduced513
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here. Instead, we adopt quad-precision arithmetic, for instance using the Advanpix514

toolbox [1], which allows accurate determination of the weights for values of h cor-515

responding to millions of nodes on the surfaces considered. Note that quad-precision516

is only needed for the computation of the weights, after which the results can be517

truncated back to double precision and the simulations fun without issues. Also note518

that computing the weights is an embarrassingly parallel task, and one that is only519

performed once for a given simulation. Optimization of ε is beyond the scope of520

this study, and the value is chosen such that weights can be computed in double521

precision for small to moderate node sets (N . 50, 000), after which we switch to522

quad-precision.523

Results for the forced heat equation of the sphere illustrating the effects of the two524

shape parameter strategies are presented in Figures 5a and 5b, in which the errors525

as a function of h are shown for a fourth order and a sixth order approximation,526

respectively. In the fourth order case, both strategies for selecting the shape parameter527

converge with the same rate for a large range of values of h, but keeping the condition528

number fixed eventually results in a stationary error as h decreases. For the sixth order529

stencil, the resulting order is slightly lower in the fixed condition number setting, and530

convergence is achieved only in a small range of values of h. Similar results for the531

torus were observed and have thus been omitted.532

Stencil sizes. The choice m = n−1 and letting the index sets I and J coincide (bar533

the evaluation node) provides ideal sparsity of the matrix RΞ in Eq. (28). However,534

as the approximation order is increased, it gradually becomes more difficult to find535

weights w that satisfy the diagonal dominance criterion. On near-uniform nodes, it is536

typically possible to find stable weights for n up to 12. The stencil selection algorithm537

will also influence the sparsity of the matrices, and certain combinations of n and m538

are more likely to produce stable weights (e.g., by symmetry). Another consideration539

is the formal approximation order of the stencil, which we are not able to derive, and540

so instead determine it experimentally. The order appears to be primarily determined541

by the number of degrees of freedom of the Hermite system, i.e., n+m.542

Figures 6a and 6b show the error as a function of h for the forced heat equation543

on the sphere and on the torus, respectively, with different values of m and n. In544

these figures, the shape parameter is kept fixed at ε = 3 for the smaller stencil sizes545

and ε = 5 for the larger ones. With these choices, quad precision arithmetic is only546

required for computing the weights for the two largest node sets, which range in size547

from N ≈ 1000 to N ≈ 200, 000. Inevitable floating point cancellation errors from the548

finite difference scheme appear to limit the accuracy at around 10−8. We summarize549

the observations from this experiment regarding observed order of convergence and550

stencil sizes in Table 2.551

Performance comparison. In addition to the stability properties discussed in Sec-552

tion 6, compact stencils provide better sparsity for the same approximation order.553

This should lead to a smaller memory footprint and fewer floating-point operations554

for solving the system in Eq. (28). In this paper, we use BiCGSTAB with zero-fill555

ILU-preconditioner for solving the linear system. Table 3 shows the number of non-556

zero elements in RΞ and the CPU time for a simulation for some combinations of N ,557

n and m. Also presented in this table is the average number of Krylov iterations per558

time step. It is interesting to note from this table that in terms of CPU time, the559

smaller implicit stencil barely outperforms the explicit stencil of the same order. This560

can be attributed to the larger number of iterations needed for the Krylov solver to561

converge. Increasing the stencil size to n = 11 and m = 15 reduces the number of562

iterations needed, plausibly due to the larger number of non-zeros in the incomplete563
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Table 2: Recommended stencil and neighborhood sizes for different approximation
orders. The order was determined from numerical experiments on the sphere and the
torus shown in Figure 6.

n m p Observed order

10 6 19 4
11 15 32 6

17 0 17 4
31 0 31 6

LU-factorization. This results in a CPU time that is comparable to that of the smaller564

implicit stencil. In this comparison, the fourth order explicit stencil (n = 17, m = 0)565

is on par with the sixth order implicit stencil both in terms of memory requirements566

and computational cost. Note that the time step chosen, ∆t = 10−3, is rather small567

(which is need for spatial errors to dominate). Increasing the time step to ∆t = 0.1568

increases the number of Krylov iterations per time step roughly by a factor of 6.

Table 3: The table shows the number of non-zeros of the matrix RΞ, the average
iteration count for the Krylov solver, and the CPU time for 200 time steps with
∆t = 10−3 for some choices of n, m and h. The surface in this experiment is the
sphere, and the tolerance for the Krylov solver is 10−10.

n m h N # of non-zeros Avg. iter. CPU time (s)

10 6
0.1 1806 18060 1.5 0.50
0.05 7446 74462 2.5 1.6
0.025 30054 300550 4.5 9.6

11 15
0.1 1806 28896 1.5 0.53
0.05 7446 119136 2 1.7
0.025 30054 480866 3.5 9.8

17 0
0.1 1806 30702 2 0.60
0.05 7446 126582 2.5 1.9
0.025 30054 510918 3.5 9.5

31 0
0.1 1806 55986 1.5 0.59
0.05 7446 230826 2 2.7
0.025 30054 931674 3.5 16.8

569

In most applications, ∆t would be chosen proportional to h in order to reduce570

both spatial and temporal errors as the node set is refined. Figure 7 shows the CPU571

time as a function of h with ∆t = 10−2 · h. For the near-uniform node sets used572

throughout this paper, N ∝ 1/
√
h, and thus the CPU time scales as O(N3/2).573

7.2. Applications. We now present applications of the new compact scheme to574

solving reaction-diffusion equations on different surfaces. As in [37], we present results575

of simulations both on surfaces defined implicitly by algebraic expressions (see Table576

1) and on more general point cloud surfaces. On the former, we simulate the same577
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two-species Turing system used in [37], given by:578

∂u

∂t
= αu(1− τ1v2) + v(1− τ2u) + δu∆Mu,(35)579

∂v

∂t
= βv

(
1 +

ατ1
β
uv

)
+ u(γ + τ2v) + δv∆Mv.(36)580

581

A visualization of the solutions of this equation on the various surfaces with the582

parameters selected from Table 4 are shown in Fig. 8. On the more general point

Table 4: The table shows the values of the parameters of Equations (35) and (36)
used in the numerical experiments shown in Figures 8. We set δu = 0.516δv for the
Red Blood Cell and Tooth models, and use δu = 5.16δv for Dupin’s Cyclide.

Pattern δv α β γ τ1 τ2 Final time

Spots 4.5× 10−3 0.899 −0.91 −0.899 0.02 0.2 200

Stripes 2.1× 10−3 0.899 −0.91 −0.899 3.5 0 4000

583

cloud surfaces, we simulate the Fitzhugh–Nagumo-type model used in [25]:584

∂u

∂t
= δu∆Mu+

1

α
u(1− u)

(
u− v + b

a

)
,(37)585

∂v

∂t
= δv∆Mv + u− v.(38)586

587

For both the Bumpy Sphere2 and Bunny3 models, we set a = 0.75, b = α = 0.02,588

δv = 0, and δu = 1.5( 2π
50 )2. With these parameters, the model generates dynamic589

spiral wave solutions. Snapshots of these solutions computed with the RBF-HFD590

method for the two surfaces are shown in Fig. 9. We note that the normal vectors591

on these point cloud models can be generated by any appropriate method. In this592

work, the node sets and normal vectors were created using MeshLab [7], utilizing593

the Poisson surface reconstruction algorithm with some additional smoothing and the594

Poisson disk sampling method.595

7.3. Curvature, node spacing, and the stencil selection algorithm. In596

some experiments, the greedy algorithm failed to find suitable stencils for some node597

points. A common characteristic for these nodes were that they were located in areas598

of large curvature, e.g., around the ears of the Bunny. Using nearest neighbor stencils599

for these cases did not cause any instabilities, however. Two simple remedies for this600

issue are increasing ε, and refining the node set. The former has previously been601

noted to improve stability (see, e.g., [15]). To illustrate the effect of curvature on the602

failure of the stencil selection algorithm we carried out an experiment generating the603

surface Laplacian on the a prolate spheroid of varying curvatures and determining the604

number of rejected stencils. The results are plotted in Fig. 10 in terms of the number605

of rejected stencils, i.e., stencils where the stability constraints could not be met, as606

a function of both the node distance h and the maximum mean curvature H. Note607

2Available from the Aim@Shape Shape Repository (http://visionair.ge.imati.cnr.it/).
3Available from the Stanford Computer Graphics Laboratory (http://graphics.stanford.edu/

data/3Dscanrep/).
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that imax and jmax in the greedy algorithm were set to five in this experiment so that608

only a small number of stencils were attempted for each node, to emphasize the effect609

of the curvature.610

8. Discussion. The compact RBF-HFD scheme improves on previous RBF-FD611

schemes for diffusion on surfaces both in terms of efficiency and stability. The pro-612

posed greedy stencil selection algorithm ensures eigenvalue stability on surfaces with-613

out large (or rapid) changes in curvature. In numerical experiments of the forced614

diffusion equation on the sphere and the torus, the new scheme provided accuracy615

similar to the previous non-compact RBF-FD method, but with a smaller memory616

footprint and higher accuracy. The linear systems generated from the semi-implicit617

BDF3 time discretization were also shown to be efficiently solvable using BiCGStab618

with a standard zero-fill ILU-preconditioner. In addition to illustrating the having619

good stability, accuracy, and efficiency properties of the scheme, we showed how it can620

be easily adaptable to reaction-diffusion equations on both implicitly defined surfaces,621

and surfaces defined by a point cloud. The method can be naturally generalized to a622

smooth orientable surface that is discretized with a set of roughly uniform nodes and623

with approximations to the normal to the surface at each of the nodes.624

While stencil sizes generating fourth and sixth order convergence in numerical ex-625

periments on the sphere and the torus are provided, no investigation of the theoretical626

convergence rates have been given. This is clearly an avenue of future investigation.627

Another future topic of research is the influence of the curvature and the shape pa-628

rameter on the computed RBF-HFD weights. Experiments suggest that large local629

curvature makes it impossible to find weights that satisfy the conditions that ensure630

eigenvalue stability, although no issues with temporal integration were encountered631

when this stability was not insured. Refining the node set appears to provide an632

easy way to alleviate the problem, and an extensive investigation of the relationship633

between nodal distance and curvature would be of value.634

Finally, we note that an extension to convection-diffusion problems would allow635

the method to be used in various applications, e.g. chemical transport on thin mem-636

branes and shells, biomechanical modeling of cells. This is currently being pursued637

by the first author.638
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(a) n = 10, m = 6, p = 19.
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Fig. 5: The error as a function of h for the forced heat equation on the sphere for
different strategies of shape parameter selection. Solid lines correspond to fixed shape
parameter, and dashed lines correspond to fixed condition number. The dash-dot
line show slopes for convergence rate O(hp) with p = 4, 6. In (a), the values of ε
are {6, 5, 4, 3, 2.5} from top to bottom and in (b), the values are {8, 7, 6, 5, 4.5}, again
from top to bottom. The values of κ(AR) are {1010, 1011, 1012, 1013, 1014, 1015} from
top to bottom (at small h) in both (a) and (b).
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Fig. 6: The error as a function of h for the forced heat equation with different stencil
sizes. The dashed lines show slopes for convergence rate O(hp), fitted from the data
points. For n = 11 and m = 15, the last point was excluded from the fit as floating
point round off errors limit the accuracy.
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Fig. 7: The run-time for a simulation of the forced heat equation on the sphere as a
function of h, using ∆t = 10−2 · h.

Fig. 8: Quasi steady turing spots and stripe patterns resulting from solving Equa-
tions (35) and (36) on the Red Blood Cell model, Dupin’s Cyclide, and the “Tooth”
model. In all plots, red corresponds to a high concentration of u and blue to a low
concentration.
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Fig. 9: Fitzhugh–Nagumo spiral wave patterns resulting from solving Equations (37)
and (38) on the Bumpy Sphere and Bunny models. In all plots, yellow corresponds
to a high concentration of u and blue to a low concentration.
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H.
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