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Abstract:

Radial basis functions (RBFs) are a powerful tool for interpolating/approximating
multidimensional scattered data in R

d. However, a direct evaluation
of an n-center RBF expansion at m points requires O(nm) operations,
which is prohibitively expensive as n,m increase. We present a new mul-
tilevel method for uniformly dense centers and points and d = 1, whose
cost is only O(C(n + m)), where C depends on the desired evaluation
accuracy. The method extends a previous work [21] to any piecewise
smooth radial kernel, e.g., thin plate spline. The multilevel summation
algorithm can be generalized to higher dimensions, and can be also ap-
plied beyond RBFs, e.g. to discrete integral transform evaluation and
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Table 1. Some commonly used radial basis functions. In all cases, ε > 0.

Type of Radial Kernel φ(r)

Smooth Kernels

Gaussian (GA) e−(εr)2

Generalized Multiquadric (GMQ) (1 + (εr)2)ν/2, ν 6= 0 and ν 6∈ 2N

Piecewise Smooth Kernels

Generalized Duchon Spline (GDS) r2k log r, k ∈ N

r2ν , ν > 0 and ν 6∈ N

Matérn
21−ν

Γ(ν)
rνKν(r), ν > 0

Compactly Supported

Wendland [26] (1 − r)k+p(r), p = polynomial, k ∈ N

electrostatic force summation.

Key words: Radial basis functions, fast multilevel multi-summation, kernel soft-
ening
AMS Classification: 41A21, 41A30, 41A63, 65D25, 65N06, 65R10, 68Q25

1 Introduction

In many science and engineering disciplines we need to interpolate or approximate
a function f : Rd → R, d ≥ 1 from a discrete set of scattered samples. Radial basis
functions (RBFs) are a simple and powerful technique for solving this problem, with
applications to cartography [17], neural networks [16], geophysics [5, 6], pattern
recognition [24], graphics and imaging [12, 13, 27], and the numerical solution of
partial differential equations [18, 19].

The basic RBF interpolant to a given set of centers {yj}nj=0 ⊂ R
d and corre-

sponding data fj = f(yj), j = 0, 1, . . . , n, is given by

s(x) =

n
∑

j=0

λ(yj)φ
(

‖x− yj‖2
)

, (1)

where x ∈ R
d, φ is a univariate, radially symmetric kernel, and the expansion

coefficients {λ(yj)}nj=0 are determined by the linear system of equations s(yj) = fj ,

j = 0, 1, . . . , n. The well-posedness of (1) and its generalization to approximation,
instead of interpolation, is discussed in [11]. Some common choices of φ are listed
in Table 1.

While RBFs are a powerful, mathematically elegant technique for approx-
imating function and derivatives in multiple dimensions, their use in large scale
computation has been hindered by two primary computational challenges:
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(i) Fitting: Given {yj}nj=0 and {fj}nj=0, determine the expansion coefficients

{λ(yj)}nj=0. For most radial kernels, this problem gives rise to (n + 1)-by-

(n + 1) dense linear system of equations which, if solved directly, requires
O(n3) operations.

(ii) Evaluation: Given {yj}nj=0 and {λ(yj)}nj=0, evaluate the RBF interpolant (1)
at multiple points x = xi, i = 0, 1, . . . ,m. For most radial kernels, this
problem gives rise to a multi-summation task which, if directly evaluated,
requires O(mn) operations.

Krylov-subspace iterative methods can be used to speed-up the computation of (i)
[3, 14, 15]. However, these methods require the ability to efficiently evaluate the
RBF interpolant (i.e. compute matrix-vector products). Therefore, overcoming (ii)
is fundamental to overcoming (i).

For smooth kernels (e.g., Table 1, top section), we presented a fast multi-
level algorithm in [21] for reducing the evaluation of (1) at m + 1 points x to
O((log(1/δ))d(n + m)) operations, where δ is the desired evaluation accuracy. In
this paper, we generalize this algorithm to the case of a 1-D (d = 1) evaluation
with piecewise smooth radial kernels φ (e.g., Table 1, middle section) and uniformly
dense centers and evaluation points. Namely, given {yj}nj=0 ⊂ R, {xi}mi=0 ⊂ R, and

λ(yj), compute

s(xi) =

n
∑

j=0

λ(yj)φ (|xi − yj|) , i = 0, 1, . . . ,m . (2)

As in the smooth kernel case, our algorithm reduces the O(mn) computational
cost of (2) to O(log(1/δ)(m+ n)), where δ is the desired evaluation accuracy. The
generalization of our algorithm to higher dimensions and non-uniform densities will
be presented in a future paper as discussed in §4.

For smooth kernels, our multilevel algorithm [21] required only two levels to
achieve a linearly scaling evaluation cost. For piecewise smooth kernels, we have to
construct a multilevel hierarchy of successively coarser levels from the original cen-
ters {yj}nj=0 and evaluation points {xi}mi=0 due to the singularity of the derivatives
of φ at r = 0. The original multilevel approach we build on was developed by Brandt
for evaluating discrete integral transforms and electrostatic particle interactions [7].

Alternative fast RBF expansion methods are the Fast Multipole Method (FMM)
[4] and the Fast Gauss Transform (FGT) [22, 23]. The main advantages of our
method are its relatively simple implementation, easy parallelization, large scope of
application to any piecewise smooth kernel in any dimension, and precise analysis
of evaluation error and complexity. For further discussion comparing our multilevel
approach with these methods, see [21, §1].

The paper is organized as follows: In §2 we introduce kernel softening, an
important tool in the multilevel evaluation algorithm. In §3 we describe our fast
evaluation algorithm. Numerical results for specific piecewise smooth kernels are
presented in §3.4. We discuss generalizations and future research in §4.
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2 Kernel Softening

Piecewise smooth kernels are increasingly smoother for larger r, but have a singu-
larity in one of their derivatives at r = 0. A special case of interest is the popular
thin plate spline kernel, φ(r) = r2 log(r), which has a jump in the second derivative
at r = 0. Consequently, we cannot directly apply the two-level evaluation algo-
rithm of [21], because the interpolation errors would be uncontrolled over a large
neighborhood of r = 0. To address this difficulty, the kernel is decomposed into two
parts [7, 8, 10],

φ(r) = φA(r) + φlocal,A(r), (3)

so that

(i) φA(r) = φ(r) (or φlocal,A(r) = 0) for all |r| ≥ A.

(ii) φA is scale-A-smooth, namely, for any δ > 0 there exists p = O(log(1/δ)) ∈ N

such that φA can be uniformly approximated to δ-accuracy by a pth-order
polynomial interpolation from its values on any uniform grid with a mesh size
comparable with A [10, 20].

We use a polynomial softened kernel φA that interpolates φ, φ′, . . . , φ(p) at
r = A and has vanishing odd derivatives up to order p at r = 0 (as required for
a smooth radially symmetric function). To satisfy these conditions, we assume φA

has the form (see also [7, 10])

φA(r) =

{

φ∗
(

r
A

)

, |r| ≤ A,

φ(r), |r| ≥ A,
φ∗(r) :=

p
∑

k=0

ak
(

r2 − 1
)k

. (4)

The solution to this generalized Hermite interpolation can be computed from the
pth order Taylor expansion of φ(A

√
t) about t = 1 [2, p. 163]. Thus, for many

kernels φ, (4) can be analytically computed for any p. For example, for the thin
plate spline

φ∗(r) = A2 log(A) +A2

(

1

2
+ log(A)

)

(r2 − 1) +

p
∑

k=2

(−1)kA2

2k(k − 1)
(r2 − 1)k. (5)

Figure 1 illustrates the softening of this kernel. An alternative kernel softening
technique that minimizes the derivative amplitudes of φA is described in [20].

The relative error δI in approximating the scale-A softened kernel φA(r) by
a centered, even, pth-order interpolation from its values on a mesh size-H uniform
grid is bounded by [25, p. 32]

δI =

∣

∣

∣

∣

∣

∣

φ (|xi − yj |)−
∑

J∈σj

ωjJφA (|xi − YJ |)

∣

∣

∣

∣

∣

∣

≤ Hp
[

Γ
(

p+1
2

)]2

p!π

∣

∣

∣
φ
(p)
A (xi − ξ)

∣

∣

∣
, (6)

where ξ is in the convex hull of {YJ}J∈σj
, j = 0, 1, . . . , n. For the thin plate spline,

it can be shown that |φ(p)
A | attains it maximum at r = 0. Thus,

∥

∥

∥
φ
(p)
A

∥

∥

∥

∞
≤ 1

Ap−2

4p
[

Γ
(

(p+1
2

)]2

πp(p− 2)
. (7)
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Figure 1. The kernel φ(r) = r2 log(r) (solid line) and the softened kernel
φA(r) for p = 4 (dashed line) and p = 8 (dashed-dotted line) for (a) A = 1 and (b)
A = 1

2 .

Using this bound, (6), and Stirling’s asymptotic formula [1, p. 257], we get

δI .

√

2

π

2A2

p3/2(p− 2)

(

pH

eA

)p

(8)

For other piecewise smooth kernels, we get a similar bound (see for example [20,
App. A]). In fact, numerical experiments suggest that for many kernels the maxi-

mum of |φ(p)
A | is attained at r = 0, which simplifies the analysis.

3 1-D Fast Evaluation Algorithm

For simplicity, we describe the algorithm when the centers {yj}nj=0 and evaluation

points {xi}mi=0 have the same average density h. Furthermore, without loss of
generality, we assume {xi}mi=0,{yj}

n
j=0 ⊆ [0, 1].

3.1 The Two-Level Case

The idea of the algorithm is to write the RBF expansion as

s(xi) = sA(xi) + slocal,A(xi), i = 0, 1, . . . ,m; (9)

sA(xi) =
n
∑

j=0

λ(yj)φA (|xi − yj|) , i = 0, 1, . . . ,m; (10)

slocal,A(xi) =
∑

j:|xi−yj|<A

λ(yj)φlocal,A (|xi − yj |) , i = 0, 1, . . . ,m. (11)
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y0 y1 y2 y3 y4 yn−1 yn

λ(y0) λ(y1) λ(y2)λ(y3) λ(y4) λ(yn−1)λ(yn)Level h:

Y 0 Y 1 Y 2 Y N −1 Y N

Λ(Y 0) Λ(Y 1) Λ(Y 2) Λ(Y N −1) Λ(Y N )
Level H:

Figure 2. Illustration of the two-level approach for the case p = 2.
{XI}MI=0 are similarly defined over {xi}mi=0. Level H contains O(p) points outside
the convex hull of level h to allow centered interpolation.

Since φA is a smooth kernel, (10) is evaluated using the two-level fast evaluation
method of [21]. Since φlocal,A is compactly supported, (11) is evaluated directly.

We define an auxiliary level H = 2h consisting of two uniform grids {YJ}NJ=0

and {XI}MI=0 with spacing H each, and a comparable softening distance A =
aH, a = O(1), so that φA is smooth at scale H . The H-grids cover {yj}nj=0 and

{xi}mi=0, respectively, so that a discrete function defined at level H can be approxi-
mated at any yj using centered pth-order interpolation, for some even positive inte-
ger p (see Figure 2 for an illustration of the two-levels). The evaluation algorithm
replaces the expensive summation (10) at level h by a less expensive summation at
level H by utilizing the spatial smoothness of φA.

The first step is to note that φA(|xi − y|) is a smooth function of y at scale
H . Therefore its value at y = yj can be approximated by a centered pth-order
interpolation from its values at neighboring YJ ’s. Namely,

φA (|xi − yj |) =
∑

J∈σj

ωjJφA (|xi − YJ |) +O(δI), j = 0, 1, . . . , n , (12)

where σj := {J : |YJ − yj | < pH/2}, ωjJ are the centered pth-order interpolation
weights from the coarse centers YJ to yj , and δI is the interpolation error, bounded
by (8).

Substituting the approximation (12) into (10) and interchanging the order of
summation, we obtain

sA(xi) =

n
∑

j=0





∑

J∈σj

ωjJφA (|xi − YJ |) +O(δI)



λ(yj)

=

N
∑

J=0

φA (|xi − YJ |)
∑

j:J∈σj

ωjJλ(yj) +O(n‖λ‖∞δI)

=

N
∑

J=0

Λ(YJ )φA (|xi − YJ |) +O(n‖λ‖∞δI), i = 0, 1, . . . ,m , (13)

where
Λ(YJ) :=

∑

j:J∈σj

ωjJλ(yj), J = 0, 1, . . . , N, (14)
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which is called anterpolation [7] or aggregation of {λ(yj)}nj=0 to level H . The upper

bound for the total interpolation error in sA(xi) is O(n‖λ‖∞δI), where ‖λ‖∞ is the
maximum norm of {λ(yj)}nj=0. In fact, if we assume that local errors accumulate

randomly, the total error will only be O(
√
n‖λ‖∞δI).

Second, we similarly use the smoothness of φA(|x− YJ |) as a function of x for
a fixed YJ to approximate its value at x = xi by a centered pth-order interpolation
from its values neighboring XI ’s. Namely,

φA (|xi − YJ |) =
∑

I∈σi

ωiIφA (|XI − YJ |) +O(δI), i = 0, 1, . . . ,m . (15)

where σi := {I : |XI − xi| < pH/2}, and ωiI are the centered pth-order interpola-
tion weights from the coarse evaluation points XI to xi. Substituting (15) into (13)
gives

sA(xi) =

N
∑

J=0

Λ(YJ)

[

∑

I∈σi

ωiIφA (|XI − YJ |) +O(δI)

]

+O(n‖λ‖∞δI)

=
∑

I∈σi

ωiI

N
∑

J=0

Λ(YJ )φA (|XI − YJ |) +O(n‖λ‖∞δI)

=
∑

I∈σi

ωiISA(XI) +O(n‖λ‖∞δI), i = 0, 1, . . . ,m , (16)

where

SA(XI) :=

N
∑

J=0

Λ(YJ )φA (|XI − YJ |) , I = 0, 1, . . . ,M . (17)

Thus, the original evaluation task (10) is replaced by the less expensive, analogous
evaluation task (17) at level H . The final step in computing {s(xi)}mi=0 in (2) is to
combine (16) with the local correction (11).

We note that if {yj}nj=0 and {xi}mi=0 have different uniform densities (e.g.

h(y) and h(x), respectively), then the only change to the algorithm is that the

corresponding coarse levels {YJ}NJ=0 and {XI}MI=0 have different mesh sizes (e.g.
H(Y ) = 2h(y) and H(X) = 2h(x), respectively).

3.2 The Multilevel Case

The number of nodes at level H is roughly (n+m)/2, which may still be too large
to sum directly. Instead, we apply the same two-level algorithm: φA is softened to
φ2A plus a local part; the former is computed using a yet coarser grid (2H) and
the latter is directly evaluated. In general, we use L ∼ log(n+m)/2 coarser levels
below the original level h, until a level is reached at which the analog of (17) can
be directly evaluated in O(n + m) operations. Figure 3 illustrates this recursive
procedure for L = 2.

Our fast evaluation task is summarized in the following recursive algorithm:
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{λ(yj)}

{Λ1(Y 1

J )}

{Λ2(Y 2

J )} {S 2

2A(X 2

I )}

{S 1

A(X 1

I )}

{s(xi)}Level 0:

Level 1:

Level 2:

− Anterpolation

− Anterpolation

− Summation

− Interpolation
− Local correction

− Interpolation
− Local correction

Density h

Mesh size H

Mesh size 2H

Figure 3. Illustration of the recursive multilevel algorithm for the case of
three levels (L = 2). Capital letters denote coarse level quantities; superscript l
denotes a quantity at level l. “Level 0” denotes the original points and centers.

Algorithm 3.1 {s(xi)}mi=0 = EVAL(φ, h, p, a, {xi}mi=0, {yj}
n
j=0, {λ(yj)}

n
j=0)

1. Anterpolation:

(i) Define H = 2h,A = aH .

(ii) For j = 0, 1, . . . , n, compute the anterpolation weights {ωjJ}J∈σj
.

(iii) Compute the coarse expansion coefficients {Λ(YJ)}NJ=0 using (14).

2. Coarse Level Summation:

(i) If N +M = O(
√
n+m) then directly evaluate SA(XI), I = 0, 1, . . . ,M .

(ii) Otherwise, evaluate on the next coarsest level:

{SA(XI)}MI=0 = EVAL(φA, H , p, a, {XI}MI=0, {YJ}NJ=0, {Λ(YJ)}NJ=0).

3. Interpolation:

(i) For i = 0, 1, . . . ,m, compute the interpolation weights {ωiI}I∈σi
.

(ii) Interpolate {SA(XI)}MI=0 to {sA(xi)}mi=0 using (16).

4. Local correction:

(i) For i = 0, 1, . . . ,m, compute the local sum {slocal,A(xi)}mi=0 in (11).

(ii) {s(xi)}mi=0 = {sA(xi)}mi=0 + {slocal,A(xi)}mi=0.

Return {s(xi)}mi=0.
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3.3 Complexity and Accuracy

We only give a general outline here; the full analysis will appear in a future work.
We first analyze the two-level case. Step 1 consists of two parts. Computing the
weights {ωjJ}J requires O(np) operations (see [21, App. A]); then (14) is executed
in O(np) operations [21, §2.2]. Step 3 consists of computing {ωiI}I , which costs
O(mp), and interpolating the level H RBF expansion to level h for a cost of O(mp).
Step 5 costs O(ma) operations, because there are m terms, each consisting of O(a)
per our assumption of uniformly dense centers and points. Hence, the complexity
is W is O((n+m)p+ma) (when step 2 is neglected).

Let s contain the values from directly summing (2) and ŝ the contain the values
from our fast evaluation for i = 0, 1, . . . ,m. We define the evaluation accuracy as
the relative error norm

E :=
‖s− ŝ‖∞
‖s‖∞

. (18)

Using (8) (or a similar bound for other kernels) for A = aH,H = 2h, we get

δI . (aH)2
(

kp

a

)p

, (19)

for some constant k = O(1). The same bound applies to E (assuming the evaluation
problem (2) is well-conditioned). The optimal parameters that minimize W subject
to a prescribed error tolerance E ≤ δ can be shown to be

popt(δ) = log

(

1− c

c

)

log

(

H2

δ

)

, (20)

aopt(δ) =
1− c

c
log

(

1− c

c

)

log

(

H2

δ

)

, (21)

where c is some O(1) constant. In practice, p is rounded to the next even integer
and a is rounded to the next integer.

Using the optimal parameters we obtain

W ∼ O ((n+m)popt(δ) +maopt(δ)) ∼ (n+m) log

(

H2

δ

)

. (n+m) log

(

1

δ

)

(22)

(note that H ≤ 1). In the case of L coarse levels, the total error is at worst the sum
of all errors accumulated in L coarsening stages. Hence, to obtain an error below a
certain δ, we use

pl = popt(2
−l−1δ), al = aopt(2

−l−1δ) (23)

when calling EVAL at level l, l = 0, . . . , L− 1. This yields

E .

L−1
∑

l=0

2−l−1δ ≤ δ.
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n δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−7 δ = 10−8

64 2.83 · 10−3 9.03 · 10−5 2.68 · 10−8 8.93 · 10−10 2.87 · 10−11

256 9.83 · 10−4 3.25 · 10−5 2.07 · 10−7 7.18 · 10−9 6.61 · 10−11

1024 3.25 · 10−4 1.15 · 10−5 3.10 · 10−7 1.12 · 10−8 5.16 · 10−10

4096 7.65 · 10−5 6.40 · 10−6 2.22 · 10−7 1.63 · 10−8 7.93 · 10−10

Table 2. Relative ℓ∞ error of the multilevel evaluation method for the thin
plate spline, versus n and δ (n = m).

The total work in the multilevel algorithm is then

W ∼
L−1
∑

l=0

2−l ((n+m)pl +mal) ∼ (n+m)

L−1
∑

l=0

21−l log

(

2l+1

δ

)

≤
(

2 + log(2) + 2 log(
1

δ
)

)

(n+m)

∼ (n+m) log

(

1

δ

)

. (24)

To sum up, choosing the algorithm’s parameters at all levels using (23) with (21),
the algorithm computes (2) to δ-accuracy in W ∼ O(log(1/δ)(n+m)) operations.

3.4 Numerical Experiments

We numerically verify the accuracy and work estimates for our multilevel method
derived above for the case of φ(r) = r2 log(r). The interpolation orders and softening
distances at all levels were chosen using (23) with (21) and a non-optimized c = 0.25.

First, we verify that with this choice of parameters the relative error E (18) is
indeed O(δ). Table 2 shows the E for various values of n and δ. Each entry in the
table is the average of ten different experiments, where {yj}nj=0 and {xi}mi=0 were

sampled from a uniform random distribution of [0, 1], and {λ(yj)}nj=0 were sampled

from a normal random distribution of [−1, 1] in each experiment. We see that E is
below δ in all cases.

Second, we verify that the workW (24) linearly scales with m, n, and log(1/δ).
Figure 4 compares the number of operations required for our multilevel method for
various values of n and δ, with a direct evaluation. Each evaluation of φ or φA is
counted as one operation. As expected, the results follow the work estimate (24).

4 Concluding Remarks

We presented a fast RBF evaluation algorithm for piecewise smooth radial kernels
in 1-D. The algorithm scales linearly with the number of centers and evaluation
points. Numerical results with the popular thin-plate spline kernel confirm the
theoretical accuracy and work estimates. This fast evaluation will hopefully provide
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Figure 4. Comparison of the number of floating point operations (FLOPs)
required for the multilevel algorithm vs. a direct evaluation with the thin plate spline
kernel. The n centers and m = n evaluation points were sampled from a uniform
random distribution of [0, 1].

an important tool to be integrated into existing RBF interpolation/approximation
software, and will allow faster solutions of large-scale interpolation problems. The
algorithm can be efficiently parallelized, as explained in [21]. Other directions for
future research follow.

Higher dimensions. The algorithm can be extended to any dimension d, us-
ing a hierarchy of uniform coarse grids in R

d, and tensor products of 1-D inter-
polations and anterpolations, as in [21, §3]. The cost of the evaluation is then
O((log(1/δ))d(n+m)) operations.

Non-uniform density. When the density h of the original centers (and/or
evaluation points) varies, the coarsening strategy must be modified to maintain
optimal evaluation complexity. A convenient option is to still use uniform coarse
grids H , but have the first few ones extend only over the high-density parts of the
domain. The rest of the algorithm remains the same. This leads to an Adaptive
Mesh Refinement (AMR) hierarchy, as explained in [20, §4].

Fast Fitting. The fast multilevel evaluation can compute matrix-vector multi-
plication in O(n) operations. It can be integrated into any of the existing iterative
methods such as Krylov-subspace method [3, 14, 15] for computing {λ(yj)}nj=0 from

given data {fj}nj=0. Moreover, for some piecewise smooth kernels (e.g. GDS), the
entire fitting problem can be solved by a multilevel “V-cycle” solver, along the lines
of [9]. The cost of solving the fitting problem to a reasonable tolerance (analogous to
the truncation error in discretizing a continuous integral transforms at the centers)
is then estimated to be 2− 3 matrix-vector multiplications.
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