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Abstract. Radial basis functions (RBFs) are a powerful tool for interpolating/approximating
multidimensional scattered data. Notwithstanding, RBFs pose computational challenges, such as
the efficient evaluation of an n-center RBF expansion at m points. A direct summation requires
O(nm) operations. We present a new multilevel method whose cost is only O((n + m) ln(1/δ)d),
where δ is the desired accuracy and d is the dimension. The method applies to smooth radial
kernels, e.g., Gaussian, multiquadric, or inverse multiquadric. We present numerical results, discuss
generalizations, and compare our method to other fast RBF evaluation methods. This multilevel
summation algorithm can be also applied beyond RBFs, to discrete integral transform evaluation,
Gaussian filtering and de-blurring of images, and particle force summation.
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1. Introduction. In many science and engineering disciplines we need to inter-
polate or approximate a function f : R

d → R, d ≥ 1 from a discrete set of scattered
samples. Radial basis functions (RBFs) are a simple and powerful technique for
solving this problem, with applications to cartography [31], neural networks [27], geo-
physics [9, 10], pattern recognition [41], graphics and imaging [16, 17, 44], and the
numerical solution of partial differential equations [33, 34].

The basic RBF approximation to f(x) is given by the expansion

s(x) =
n
∑

j=0

λ(yj)φ (‖x− yj‖) , (1.1)

where boldface symbols are in R
d, ‖ · ‖ denotes the d-dimensional Euclidean norm,

{yj}nj=0 are called centers, λ(yj) are the expansion coefficients, and φ is a univariate,

radially symmetric kernel. Given data fj = f(yj), j = 0, 1, . . . , n, the expansion co-
efficients are chosen to satisfy the interpolation conditions s(yj) = fj , j = 0, 1, . . . , n,
or in matrix notation, to solve



 Φ







λ



 =



f



 , where Φi,j = φ (‖yi − yj‖) . (1.2)

More generally, one can choose more data than centers and solve the corresponding
overdetermined system for λ [15, Ch. 8]. Some common choices of φ are listed in
Table 1. The well-posedness of (1.2) is discussed in [18, Ch. 12–16].

Although RBFs have been effectively applied to many applications, their wider
adoption has been hindered by a prohibitively high, non-scalable computational cost,
mainly stemming from the infinite support of the commonly used radial kernels [25].
The two main computational challenges of RBFs are
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Type of Radial Kernel φ(r)

Smooth Kernels

Gaussian (GA) e−(εr)2

Generalized multiquadric (GMQ) (1 + (εr)2)ν/2, ν 6= 0 and ν 6∈ 2N

• Multiquadric (MQ) (1 + (εr)2)1/2

• Inverse multiquadric (IMQ) (1 + (εr)2)−1/2

• Inverse quadratic (IQ) (1 + (εr)2)−1

Piecewise Smooth Kernels

Generalized Duchon spline (GDS) r2k ln r, k ∈ N

r2ν , ν > 0 and ν 6∈ N

Matérn
21−ν

Γ(ν)
rνKν(r), ν > 0

Wendland [43] (1− r)k
+p(r), p = polynomial, k ∈ N

Oscillatory Kernels

J-Bessel (JB) [24] φd(r) =
J d

2
−1

(εr)

(εr)
d
2
−1

, d = 1, 2, . . .

Table 1.1

Some commonly used radial basis functions. In all cases, ε > 0.

(A) Fitting: Given {yj}nj=0 and {fj}nj=0, determine the expansion coefficients

{λ(yj)}nj=0. Because Φ in (1.2) is a dense (n + 1)-by-(n + 1) symmetric

matrix, standard direct solvers require O(n3) operations.
(B) Evaluation: Given {yj}nj=0 and {λ(yj)}nj=0, evaluate the RBF interpolant

(1.1) at multiple points x = xi, i = 0, 1, . . . , m. The cost of direct summation
of (1.1) for all xi is O(mn).

In practice, it is sufficient to solve (A) and (B) up to some specified error tolerance. A
few Krylov-subspace iterative methods have been developed for (A) [2, 3, 21, 22, 23].
These algorithms require the ability to efficiently multiply Φ by a vector. Thus,
overcoming (B) is also important to overcoming (A).

In this paper we develop a fast multilevel evaluation algorithm for reducing the
computational cost of (B) to O((m + n)(ln(1/δ))d) operations, where δ is the desired
evaluation accuracy. The method is applicable to any smooth φ (e.g., Table 1, top
section) in any dimension d, and to any centers {yj}nj=0 and evaluation points {xi}mi=0.
The idea is that a smooth φ can be accurately represented on a coarser grid of fewer
centers and evaluation points, at which a direct summation of (1.1) is less expensive.
This approach builds on Brandt’s multilevel evaluation of integral transforms [11];
because of the smoothness of φ, our method only requires two levels.

Alternative fast RBF expansion methods are:

• Fast Multipole Method (FMM). Beatson and Newsam [7] originally devel-
oped an FMM for evaluating RBF expansions with the k = 1 GDS ker-
nel (see Table 1). More recently, Beatson and colleagues have extended the
FMM to other radial kernels [4, 5, 6, 7, 19]. The evaluation complexity is
O((m + n)(ln n)(ln(1/δ))d+1), where δ is the desired accuracy. While these
methods have been successful in applications [9, 10, 17], they are rather com-
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plicated to program – especially in higher dimensions, because of the complex
hierarchical structure and tree codes required to decompose φ into “near field”
and “far field” components [15, §7.3]. Additionally, a different set of Laurent
and Taylor coefficients must be determined for each new radial kernel and
dimension d.
• Fast Gauss Transform (FGT). Roussos and Baxter [38, 39] adapted the Fast

Gauss Transform (FGT) of Greengard and Strain [30] to RBF evaluation.
Exploiting the conditionally positive (negative) definite properties of certain
radial kernels, (1.1) is replaced by the evaluation of (1.1) with the GA kernel
using FGT, followed by an appropriate Gaussian quadrature rule for trans-
lating the GA result back to the original kernel. The algorithm’s cost is
O(m+n), where the constant increases with the desired accuracy and dimen-
sion. FGT is non-hierarchical and parallelizable, but it is hard to precisely
control the evaluation error due to the complicated quadrature rules.

The main advantages of our method include:
(i) Its implementation is simple and easily parallelizable for all smooth kernels

φ in any dimension d.
(ii) The evaluation error of the method normally depends only simple bounds on

the derivatives of φ(r) at r = 0 (such bounds for many useful kernels are
given in Appendix B).

(iii) The accuracy and complexity of any fast evaluation method must depend
on φ and thus on the “shape parameter” ε. In practice, ε is required to
grow with n to avoid severe numerical ill-conditioning of the linear system
(1.2) for computing the expansion coefficients [40]. Unlike the FMM and
FGT methods, we explicitly include the shape parameter ε in our algorithm’s
analysis. Therefore, we are able to provide precise user control over the
evaluation error and precise asymptotic results on the complexity.

Unlike the FMM, our method is presently limited to smooth radial kernels. Its gen-
eralization to piecewise-smooth kernels like GDS is still a work-in-progress; see §7.

Our algorithm has important applications beyond RBFs: filtering and de-blurring
of images [29, pp. 165–184]; force summation among particles/atoms with smooth
potential of interactions φ (e.g., [11, §1–3]); evaluation and solution of continuous
integral equations [20]

s(x) =

∫

Ω

φ(‖x− y‖)λ(y)dy , (1.3)

discretized on the centers {yj}nj=0 and evaluation points {xi}mi=0; and so on.
The paper is organized as follows: In §2 we derive our fast evaluation algorithm in

1-D for any smooth kernel. We apply this general algorithm to specific smooth kernels
from Table 1 and show numerical results in §3. The generalization of the algorithm
to d > 1 dimensions is described in §4, followed by application of the d-dimensional
algorithm to specific smooth kernels in §5. In §6, we present several numerical results
in two and three dimensions. We discuss future research in §7.

2. 1-D Fast Evaluation Algorithm. Let φ be a smooth radial kernel (see
Table 1, top section), and {yj}nj=0 , {xi}mi=0 ⊂ R. Without loss of generality, we

assume that the centers {yj}nj=0 and the evaluation points {xi}mi=0 lie in [0, 1] and are
sorted so that yj < yj+1, j = 0, 1, . . . , n− 1, and xi < xi+1, i = 0, 1, . . . , m− 1. We
denote by “level h” the collection of {yj}nj=0 and {xi}mi=0 and make no assumption on

the densities of {yj}nj=0 and {xi}mi=0. Quantities defined at these centers and points
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y0 y1 y2 y3 y4 yn−1 yn

λ(y0) λ(y1) λ(y2)λ(y3) λ(y4) λ(yn−1)λ(yn)
Level h:

Y 0 Y 1 Y 2 Y N −1 Y N

Λ(Y 0) Λ(Y 1) Λ(Y 2) Λ(Y N −1) Λ(Y N )
Level H:

Fig. 2.1. Illustration of the two-level approach for the case p = 2. {XI}
M
I=0

are similarly
defined over {xi}

m
i=0

. Level H contains O(p) points outside the convex hull of level h to allow
centered interpolation.

are denoted by lowercase symbols (e.g., {λ(yj)}nj=0 , {s(xi)}mi=0). The 1-D evaluation
task is to compute

s(xi) =
n
∑

j=0

λ(yj)φ (|xi − yj |) , i = 0, 1, . . . , m . (2.1)

We define an auxiliary “level H” consisting of two uniform grids {YJ}NJ=0 and {XI}MI=0

with spacing H each. These grids cover {yj}nj=0 and {xi}mi=0, respectively, so that
a discrete function defined at level H can be approximated at any yj using centered
pth-order interpolation, for some even p ∈ N. Specifically, we choose

YJ = y0 −
(p− 1)H

2
+ JH, J = 0, 1, . . . , N, N =

⌊

yn − y0

H
− 0.5

⌋

+ p,

XI = x0 −
(p− 1)H

2
+ IH, I = 0, 1, . . . , M, M =

⌊

xm − x0

H
− 0.5

⌋

+ p.

Quantities defined at level H are denoted by uppercase symbols (e.g., {Λ(YJ )}NJ=0,

{S(XI)}MI=0); see Fig. 2.1. Level H is coarser than, and at most comparable with
level h; H, p are determined by the shape parameter ε of φ and the target accuracy δ
in {s(xi)}mi=0 (see §2.1, §3). The evaluation algorithm replaces the expensive summa-
tion (2.1) at level h by a less expensive summation at level H by utilizing the spatial
smoothness of φ. First, φ(|xi−y|) is a smooth function of y, for every fixed xi. There-
fore its value at y = yj can be approximated by a centered pth-order interpolation
from its values at neighboring YJ ’s. Namely,

φ (|xi − yj |) =
∑

J∈σj

ωjJφ (|xi − YJ |) + O(δI), j = 0, 1, . . . , n , (2.2)

where σj := {J : |YJ − yj| < pH/2}, ωjJ are the centered pth-order interpolation
weights from the coarse centers YJ to yj, and δI is the interpolation error, which we
bound in §2.1 and §3. Substituting the approximation (2.2) into (2.1) and interchang-

4



ing the order of summation, we obtain

s(xi) =

n
∑

j=0





∑

J∈σj

ωjJφ (|xi − YJ |) + O(δI)



 λ(yj)

=
N
∑

J=0

φ (|xi − YJ |)
∑

j:J∈σj

ωjJλ(yj) + O(n‖λ‖∞δI)

=
N
∑

J=0

Λ(YJ )φ (|xi − YJ |) + O(n‖λ‖∞δI), i = 0, 1, . . . , m , (2.3)

where

Λ(YJ) :=
∑

j:J∈σj

ωjJλ(yj), J = 0, 1, . . . , N, (2.4)

which is called anterpolation [11] or aggregation of {λ(yj)}nj=0 to level H . The upper

bound for the total interpolation error in s(xi) is O(n‖λ‖∞δI), where ‖λ‖∞ is the
maximum norm of {λ(yj)}nj=0. In fact, if we assume that local errors accumulate

randomly, the total error will only be O(
√

n‖λ‖∞δI).
Second, we similarly use the smoothness of φ(|x − YJ |) as a function of x for a

fixed YJ to approximate its value at x = xi by a centered pth-order interpolation from
its values neighboring XI ’s. Namely,

φ (|xi − YJ |) =
∑

I∈σi

ωiIφ (|XI − YJ |) + O(δI), i = 0, 1, . . . , m . (2.5)

where σi := {I : |XI − xi| < pH/2}, and ωiI are the centered pth-order interpolation
weights from the coarse evaluation points XI to xi. Substituting (2.5) into (2.3) gives

s(xi) =

N
∑

J=0

Λ(YJ )

[

∑

I∈σi

ωiIφ (|XI − YJ |) + O(δI)

]

+ O(n‖λ‖∞δI)

=
∑

I∈σi

ωiI

N
∑

J=0

Λ(YJ)φ (|XI − YJ |) + O(n‖λ‖∞δI)

=
∑

I∈σi

ωiIS(XI) + O(n‖λ‖∞δI), i = 0, 1, . . . , m , (2.6)

where

S(XI) :=

N
∑

J=0

Λ(YJ )φ (|XI − YJ |) , I = 0, 1, . . . , M . (2.7)

For fast-decaying φ (e.g. GA),(2.7) can be truncated to a neighborhood of XI and
replaced by

S(XI) =
∑

J:|YJ−XI |<cH

Λ(YJ )φ (|XI − YJ |) + O(n‖λ‖∞δT ), I = 0, 1, . . . , M , (2.8)

where c ∈ N and the truncation error δT depends on φ and c. If φ does not decay fast
(or at all) as r →∞ (e.g. IMQ and MQ), we resort to c = N (i.e. no truncation).
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Thus, the original evaluation task (2.1) is replaced by the less expensive, anal-
ogous evaluation task (2.8) at level H . Assuming (2.8) is directly summed, we can

reconstruct {s(xi)}mi=0 by interpolating {S(XI)}MI=0 back to level h, namely, comput-
ing (2.6). Summarizing, our fast evaluation task consists of the following steps:

1. Anterpolation: for every j = 0, 1, . . . , n, compute the anterpolation weights
{ωjJ}J∈σj . Compute the coarse expansion coefficients {Λ(YJ)}NJ=0 using
(2.4).

2. Coarse Level Summation: evaluate S(XI), I = 0, 1, . . . , M using (2.8).
3. Interpolation: for every i = 0, 1, . . . , m, compute the interpolation weights
{ωiI}I∈σi . Then interpolate {S(XI)}MI=0 to {s(xi)}mi=0 using (2.6).

2.1. Complexity and Accuracy. Step 1 consists of two parts. Computing the
weights {ωjJ}J requires O(pn) operations (see Appendix A). Then (2.4) is executed
in O(pn) operations (see §2.2). The truncated coarse sum in step 2 requires O(cM)
operations. In some cases, this cost can be cut using the Fast Fourier Transform
(FFT) as discussed below. Step 3 consists of computing {ωiI}I , which costs O(pm),
and interpolating the level H RBF expansion to level h for a cost of O(pm). The
algorithm’s complexity is thus

W ∼ (n + m)p +
c

H
. (2.9)

Because the coarse grid interpolations are centered and p is even, the error δI can
be bounded by [42, p. 32]

δI =

∣

∣

∣

∣

∣

∣

φ (|xi − yj |)−
∑

J∈σj

ωjJφ (|xi − YJ |)

∣

∣

∣

∣

∣

∣

≤ Hp
[

Γ
(

p+1
2

)]2

p!π

∣

∣

∣φ(p)(xi − ξ)
∣

∣

∣ ,

where ξ is in the convex hull of {YJ}J∈σj , j = 0, 1, . . . , n. For infinitely smooth φ we
obtain the uniform bound

δI ≤
Hp
[

Γ
(

p+1
2

)]2

p!π

∥

∥

∥
φ(p)

∥

∥

∥

∞
.

The truncation error δT in S(XI) due to (2.8) is bounded by the “tail” of φ. For
every I,

δT ≤
∫ XI−cH

−∞

|φ(|Y −XI |)|dY +

∫ ∞

XI+cH

|φ(|Y −XI |)|dY = 2

∫ ∞

cH

|φ(r)|dr.

Let s contain the values from directly summing (2.1) and ŝ the contain the values
from our fast evaluation for i = 0, 1, . . . , m. We define the evaluation accuracy as the
relative error norm

E :=
‖s− ŝ‖∞
‖s‖∞

. (2.10)

Using the bounds on δI and δT , we obtain

E ∼ κ

(

Hp
[

Γ
(

p+1
2

)]2

p!π

∥

∥

∥φ(p)
∥

∥

∥

∞
+ 2

∫ ∞

cH

‖φ(r)‖dr

)

, (2.11)
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where κ := n‖λ‖∞/‖s‖∞ is a measure of the condition number of the direct evaluation
problem (2.1) (see the paragraph below). The algorithm’s efficiency is determined
by choosing the parameters H, p, c to minimize W for a bounded accuracy E ≤ δ
(or minimize E subject to bounded W ). An exact optimization is of course not
required. The algorithm’s efficiency depends only on φ, not on the specific locations
{yj}nj=0 , {xi}mi=0 or the values {λ(yj)}nj=0. In §3 we show for a few specific RBFs that

by correctly choosing the parameters (normally p ∼ c ∼ ln(1/δ)), the algorithm scales
linearly with n + m with constant ∼ ln(1/δ).

We conclude this section with a note on the condition number κ of (2.1). From [32],
we know that if (2.1) is summed directly with precision u, then relative errors in s

of size κu would be introduced. For example, if u = 10−16, ‖λ‖∞ = O(108), and
{λ(yj)}nj=0 have alternating signs so that ‖s‖∞ = O(1) (as is often the case in RBF

approximations), then κu = O(108u) = O(10−8). This error analysis also holds true
for any indirect summation method of (2.1) (e.g. FMM, FGT, or the current ap-
proach). Similar to these other fast evalution methods, we hereafter assume that the
condition number κ is not too large, otherwise δI , δT should be much smaller than δ
to achieve E ≤ δ.

2.2. Fast Update; Parallelization. Interpolation. Note that each s(xi), i =

0, 1, . . . , m, in step 3 can be independently interpolated from {S(XI)}MI=0. Hence,
evaluating at a new point x costs O(p) = O(ln(1/δ)) operations, without repeating
or updating steps 1 and 2. Most likely, new evaluation points lie in the convex hull
of {YJ}NJ=0 and thus of {XI}MI=0. However, if x cannot be centrally interpolated from

existing {XI}MI=0, we append the coarse grid with at most p new XI ’s near x. The
coarse summation (2.7) is then performed for the new XI ’s and s(xi) is centrally
interpolated from these S(XI). This update requires O(pN) operations, which for
some cases may be O(

√
n ln(1/δ)) (see §3); further evaluations inside the convex hull

of the extended coarse grid cost only O(ln(1/δ)) per new evaluation point.
Anterpolation. Adjointly to interpolation, we implement anterpolation in our

code as follows. First, all {Λ(YJ )}NJ=0 are set to zero. For each j = 0, 1, . . . , n we
increment the coarse expansion coefficients which include λ(yj) in their sum (2.4);
namely,

Λ(YJ)←− Λ(YJ ) + ωjJλ(yj), ∀J ∈ σj . (2.12)

This computation may be interpreted as distributing λ(yj) between several neighbor-
ing coarse centers, as illustrated in Fig. 2.2. A new center y can now be accommodated

λ(y j−2 ) λ(y j−1 ) λ(y j) λ(y j+1) λ(y j+2)

Λ (Y J −1 ) Λ (Y J) Λ (Y J +1) Λ (Y J +2)

ωjJ −1 ωjJ ωjJ +1 ωjJ +2

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

Fig. 2.2. Anterpolation can be interpreted as distributing each λ(yj) between several neighboring
coarse centers YJ . The Figure depicts an example for p = 4.

by incrementing few Λ(YJ )’s neighboring y by (2.12) (O(p) operations), updating the

7



coarse sums (2.7) for all XI ’s (O(pN) operations), and interpolating (O(pm) oper-
ations), a total of O(p(m + N)) operations. Note that if we want to update the
interpolant s(xi) only for some xi near y, we need update only O(p) relevant S(XI)
with XI near xi, hence the cost of this update is only O(p2). For y outside the convex

hull of {YJ}NJ=0, use a grid extension as in the previous paragraph. This complexity
analysis also applies to removing a center yj from the RBF interpolant.

Parallelization. The fast evaluation algorithm readily lends itself to distributed
architectures. Anterpolation of each λ(yj) to the coarse lattice can be done indepen-
dently of the others, however, multiple j’s may require conflicting access to the same
coarse data (all yj ’s with J ∈ σj would like to add their contributions to Λ(YJ)).
A domain decomposition approach in which each processor is assigned a contiguous
sub-domain of the centers {yj}nj=0 to work on, will resolve such conflicts. Similar
ideas can be applied to the coarse level summation and interpolation steps.

2.3. Fast Coarse Level Summation. In cases where the evaluation points
{xi}mi=0 are not far outside the convex hull of the centers {yj}nj=0, and vice versa, the
coarse evaluation points can be set equal to the coarse centers, viz. M = N , XJ = YJ ,
J = 0, 1, . . . , N . The coarse level summation (2.7) then amounts to a matrix vector
product similar to (1.2), where Φ is now an N ×N symmetric Toeplitz matrix. Thus,
(2.7) can be computed in O(N lnN) operations using the FFT [28, pp. 201–202].
This approach is especially attractive for reducing the O(N2) complexity of a non-
truncated coarse level summation (i.e c = N) for a large enough N . The complexity
of the algorithm thus becomes

W ∼ (n + m)p +
1

H
min

{

c, ln
1

H

}

, (2.13)

which scales linearly with n and m.

3. Examples of 1-D Evaluation.

3.1. GA Kernel. Let φ(r) = e−(εr)2 . Then

∥

∥

∥φ(p)
∥

∥

∥

∞
= εp p!

(p/2)!
, (3.1)

(see (B.3) of Appendix B with d = 1). In addition, φ exponentially decays at r →∞,
and the “tail” is bounded by [1, p. 298]

∫ ∞

cH

e−ε2r2

dr ≤ e−(cHε)2

ε
. (3.2)

Using (3.2) and Stirling’s asymptotic formula [1, p. 257]

Γ(az + b) ∼
√

2πe−az(az)az+b−1/2 (3.3)

in (2.11), we obtain the accuracy estimate (keeping only the main terms)

E ∼
(

2√
πp

)(

Hε
√

p√
2e

)p

+ 2
e−(cHε)2

ε
.

(

Hε
√

p√
2e

)p

+
e−(cHε)2

ε
. (3.4)
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The first term in E can be bounded by δ only if we require Hε
√

p < b
√

2e for some
0 < b < 1, and p = O(ln(1/δ)). Thus,

H ∼ 1

ε
√

p
, (3.5)

p ∼ ln
1

δ
. (3.6)

In practice, p is rounded to the next even integer. The second term is bounded by
O(δ) if

ln
1

ε
− (cHε)2 . ln δ ⇐⇒ 1

Hε

(

ln
1

εδ

)
1
2

. c,

provided εδ < 1. W is minimized if and only if c is, hence we choose

c ∼
(

ln
1

εδ
ln

1

δ

)
1
2

. (3.7)

By selecting (3.5)–(3.7), we can evaluate (2.1) for the GA RBF in

W ∼ O

(

(

ln
1

δ

)

(n + m) +

(

ln
1

εδ
ln

1

δ

)
1
2

ε

)

(3.8)

operations. The complexity scales linearly with n and m for all ε . n. If ε≫ n, the
original summation (2.1) can be truncated similarly to (2.8) and directly evaluated
in O(n + m) operations. Hence, the evaluation task (2.1) with the GA kernel can be
carried out in O(n + m) operations, for all ε > 0.

3.1.1. Numerical Experiments. We numerically verify the accuracy and work
estimates for our multilevel method derived above. In all experiments we set ε =

√
n/4

and m = 2n. Similar results are obtained with other n, m, ε. We do not employ the
FFT summation technique of §2.3.

To enforce δI + δT ≤ δ, we set the algorithm’s parameters so that δI = δT = δ/2.
The work (3.8) is then minimized when H, p, c are chosen as follows:

p =
ln 2

δ

ln 1
b

H =
b

ε

(

2e

p

)
1
2

, (3.9)

p = ⌈⌈p⌉⌉ , (3.10)

c =











⌈ g

Hε

(

ln 4
εδ

)
1
2

⌉

ε <
4

δ
,

0 ε ≥ 4

δ
,

(3.11)

where ⌈·⌉ denotes rounding to the next integer and ⌈⌈·⌉⌉ indicates rounding the argu-
ment to the next even integer. We use b = 1/4 and g = 1.1; a more precise analysis
(also alleviating the need for the deriviation (3.5)–(3.7)) could optimize b, g by prepar-
ing a numerical table of the relative error E = E(b, g) (measured for several different
n’s versus a direct evaluation of (2.1), and averaged over several random {λ(yj)}nj=0),

9



and using b, g to minimize W under E ≤ δ. However, this hardly seems profitable, as
good results are obtained for our rough estimates for b, g.

First, we verify that with this choice of parameters the relative error E (2.10)
is indeed O(δ). Table 3.1 shows the E for various values of n and δ. Each entry
in the table is the average of ten different experiments, where {yj}nj=0 and {xi}mi=0

were randomly selected in [0, 1], and {λ(yj)}nj=0 randomly chosen in [−1, 1] in each
experiment. Clearly, E is below δ in all cases.

n δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10

100 5.34 · 10−3 1.34 · 10−5 7.12 · 10−8 1.84 · 10−9 5.90 · 10−12

200 5.55 · 10−3 2.07 · 10−5 5.66 · 10−8 1.39 · 10−9 7.43 · 10−12

400 3.50 · 10−3 1.12 · 10−5 5.71 · 10−8 1.23 · 10−9 6.49 · 10−12

800 4.28 · 10−3 1.99 · 10−5 4.99 · 10−8 1.59 · 10−9 4.81 · 10−12

1600 3.15 · 10−3 1.95 · 10−5 9.21 · 10−8 1.44 · 10−9 7.84 · 10−12

Table 3.1

Relative error E of the multilevel evaluation method for the GA, versus n and δ (m = 2n).

Second, we verify that the work W (3.8) linearly scales with m, n, and ln(1/δ).
Table 3.2 compares the number of operations required for our multilevel method for
various values of n and δ, with a direct evaluation. Each evaluation of e−t is counted
as one operation. As expected, the results follow the work estimate (3.8), giving
W ≈ α ln(1/δ)(n + m), where 5.7 < α < 7.2. Note that the hidden constant (which
is of course only roughly estimated here) is very small.

n δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10 direct

100 10402 19911 29940 35282 45686 100000

200 20492 38816 57820 68177 87431 400000

400 40227 76181 112710 132222 169441 1600000

800 79572 149716 221165 258857 331206 6400000

1600 158042 296596 436435 510302 651801 25600000
Table 3.2

Work (number of floating-point operations) W required of the multilevel evaluation method for
the GA, for various n and desired accuracies δ. The right column indicates the number of operations
required for a direct evaluation. We average over centers and expansion coefficients as in Table 3.1.

3.2. MQ Kernel. Let φ(r) = (1 + (εr)2)
1
2 . This kernel grows as r→∞, hence

we do not truncate the coarse level sum by choosing c = N in (2.8). From (B.8) of
Appendix B with ν = 1, d = 1,

∥

∥

∥φ(p)
∥

∥

∥

∞
= εp 2pΓ

(

p+1
2

)

Γ
(

p−1
2

)

2π
. (3.12)

Applying this to (2.11) and expanding with (3.3), we obtain the accuracy estimate

E ∼ 2

p

(

2

πp

)
1
2
(

Hεp

2e

)p

.

(

Hεp

2e

)p

. (3.13)
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This can be bounded by δ only if we require Hεp < 2eb for some 0 < b < 1, and
p = O(ln(1/δ)). Thus,

H ∼ 1

εp
(3.14)

p ∼ ln
1

δ
. (3.15)

Again, p is rounded to the next even integer. The fast evaluation complexity for the
MQ kernel is

W ∼ O

(

(

ln
1

δ

)

(n + m) +

(

ln
1

δ

)2

ε2

)

(3.16)

operations. Hence, the algorithm scales linearly with n and m for all ε ∼ √n or
smaller. For larger ε, W is dominated by the coarse level summation (2.7). As
discussed in §2.3, we can reduce this computation to O((ln(1/δ)ε) ln(ln(1/δ)ε)) using
the FFT.

3.2.1. Numerical Experiments. Similarly to §3.1.1, we numerically verify the
accuracy and work estimates derived above. The same assumptions on the centers,
evaluation points and expansion coefficients are made; ε =

√
n/4 and m = 2n. The

FFT summation technique of §2.3 is not used, as ε ∼ √n.
Here, δT = 0, thus we choose p, H to have δI ∼ δ. The optimal H, p that minimize

(2.9) are

p =
ln 1

δ

ln 1
b

(3.17)

H =
2eb

εp
, (3.18)

p = ⌈⌈p⌉⌉ , (3.19)

We use the non-optimized value of b = 1/4.
We first verify that the relative error E ∼ O(δ). Table 3.3 shows the results for

E for various values of n and δ. Each entry in the table is the average of ten different
random experiments as in Table 3.1. Note that E is much smaller than δ, especially
as δ becomes smaller (i.e. as p grows). This is most likely because the last bound
in (3.13) does not account for the p

√
p term in the denominator. More precise error

bounds and parameter studies will be explored in future research.

n δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10

100 2.15 · 10−3 2.37 · 10−6 2.41 · 10−8 1.61 · 10−10 4.61 · 10−13

200 1.31 · 10−3 3.16 · 10−6 2.15 · 10−8 9.80 · 10−11 2.84 · 10−13

400 9.55 · 10−4 1.13 · 10−6 1.21 · 10−8 3.37 · 10−11 1.34 · 10−13

800 4.36 · 10−4 1.07 · 10−6 6.78 · 10−9 3.06 · 10−11 5.47 · 10−14

1600 5.13 · 10−4 6.64 · 10−7 4.11 · 10−9 1.54 · 10−11 1.14 · 10−13

Table 3.3

Relative error E of the multilevel evaluation method for MQ kernel.

Second, we verify that the work W (3.8) scales linearly with m, n, and ln(1/δ).
Table 3.4 compares the number of operations required for our multilevel method for
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various values of n and δ. Each evaluation of
√

1 + t is counted as one operation. The
method scales linearly, similar to Table 3.2. For this case, W ≈ α ln(1/δ)(n + m),
where 5.8 < α < 7.2.

n δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10 direct

100 10222 20146 26278 38002 51211 100000

200 20267 39371 51138 73487 96911 400000

400 40102 77566 100303 142727 187711 1600000

800 79827 154091 197678 280127 366986 6400000

1600 159142 305891 391303 554002 723706 25600000
Table 3.4

Measure of work W required of the multilevel evaluation method for the MQ, in terms of oper-
ation count. The right column indicates the number of operations required for a direct evaluation.
The centers and m = 2n evaluation points are randomly distributed in the [0, 1].

3.3. IMQ Kernel. The infinitely smooth kernel φ(r) = (1+ (εr)2)−
1
2 decays as

r →∞, but not rapidly enough for a coarse level truncation in (2.8). Thus, we again
set c = N . The following bound on φ(p)(r) follows from (B.8) with ν = −1, d = 1:

∥

∥

∥φ(p)
∥

∥

∥

∞
= εp 2p

(

Γ
(

p+1
2

))2

2π
. (3.20)

Using this in (2.11) and expanding with (3.3), we obtain the same accuracy estimate
as (3.13), thus we use the same parameters as for MQ, (3.18)–(3.19). The numerical
results are similar to those of §3.2, hence we do not further elaborate on them.

4. Fast Evaluation Algorithm in Two and Higher Dimensions. We now
consider the multilevel algorithm for smooth kernels in higher dimensions. For sim-
plicity, we only describe the two-dimensional algorithm as the generalization to higher
dimensions should be straightforward. We do, however, describe the complexity of
the algorithm in terms of d ≥ 2 dimensions.

Let {yj}nj=0 , {xi}mi=0 ⊂ R
2 and yj = (y

(1)
j , y

(2)
j ), xj = (x

(1)
i , x

(2)
i ). Without loss

of generality, we assume that the centers {yj}nj=0 and evaluation points {xi}mi=0 lie in

[0, 1]2. We again make no assumption on the densities of the centers and evaluation
points, but still label them as “level h”, where h is some measure of cell/point dis-
tribution. Quantities defined at level h are again denoted by lowercase symbols. The
task is now to compute

s(xi) =
n
∑

j=0

λ(yj)φ (‖xi − yj‖) , i = 0, 1, . . . , m . (4.1)

We define an auxiliary “level H”, H = (H, H), where each component consists of two

uniform grids
{

Y
(k)
Jk

}Nk

Jk=0
,
{

X
(k)
Ik

}Mk

Ik=0
, k = 1, 2, each with spacing H . Furthermore,

we introduce the notation

{YJ}NJ=0 =
{

Y
(1)
J1

}N1

J1=0
×
{

Y
(2)
J2

}N2

J2=0
, J = (J1, J2), N = (N1, N2), and

{XI}MI=0 =
{

X
(1)
I1

}M1

I1=0
×
{

X
(2)
I2

}M2

I2=0
, I = (I1, I2), M = (M1, M2),

12



where × denotes the Cartesian (or direct) product. As an example, the level H center

(Y
(1)
J1

, Y
(2)
J2

) corresponds to Y(J1,J2); similar notation holds for the level H evaluation
points. Note that this notation differs from the level h notation where the centers
and evaluation points are simply a list of the 2-D points. The grids {YJ}NJ=0 and

{XI}MI=0 are selected so that they cover {yj}nj=0 and {xi}mi=0, respectively, with the
additional condition that a discrete function at level H can be approximated at any
yj using centered, pth-order, tensor product interpolation, for p ∈ 2N. Specifically,
for k = 1, 2, we choose

Y
(k)
J = y

(k)
min −

(p− 1)H

2
+ JH, J = 0, 1, . . . , Nk,

X
(k)
I = x

(k)
min −

(p− 1)H

2
+ IH, I = 0, 1, . . . , Mk,

where

Nk =

⌊

y
(k)
max − y

(k)
min

H
− 0.5

⌋

+ p, y
(k)
min = min

0≤j≤n
y
(k)
j , y(k)

max = max
0≤j≤n

y
(k)
j ,

Mk =

⌊

x
(k)
max − x

(k)
min

H
− 0.5

⌋

+ p, x
(k)
min = min

0≤i≤m
x

(k)
i , x(k)

max = max
0≤i≤m

x
(k)
i .

As for the 1-D algorithm, level H is coarser than, and at most comparable with level
h. The values of H and p are determined by ε and the target accuracy δ in evaluating
(4.1) as explained in the following sections. Utilizing φ’s spatial smoothness, we again
replace the expensive summation (4.1) by a less expensive summation at level H.

Because φ(‖xi − y‖) is a smooth function of y(1), y(2) for every fixed xi, its value
at y = yj can be approximated by a centered pth-order, tensor product interpolation
in y(1) and y(2) from its values at neighboring YJ’s. Namely,

φ (‖xi − yj‖) =
∑

J2∈σ
(2)
j

ωjJ2

∑

J1∈σ
(1)
j

ωjJ1φ
(∥

∥xi −Y(J1,J2)

∥

∥

)

+ O(δI), j = 0, 1, . . . , n ,

(4.2)

where for k = 1, 2, σ
(k)
j :=

{

Jk : |Y (k)
Jk
− y

(k)
j | < pH/2

}

, ωjJk
are the centered pth-

order interpolation weights from the coarse centers Y
(k)
Jk

to y
(k)
j , and δI is the interpo-

lation error, which we bound in §4.1 and §5. The anterpolation of {λ(yj)}nj=0 to level

H is obtained by substituting the approximation (4.2) into (4.1) and interchanging
the order of summation:

s(xi) =

N2
∑

J2=0

N1
∑

J1=0

Λ
(

Y(J1,J2)

)

φ
(∥

∥xi −Y(J1,J2)

∥

∥

)

+ O(n‖λ‖∞δI), i = 0, 1, . . . , m ,

(4.3)
where

Λ
(

Y(J1,J2)

)

:=
∑

j:J2∈σ
(2)
j

ωjJ2

∑

j:J1∈σ
(2)
j

ωjJ1λ(yj), J2 = 0, 1, . . . , N2, J1 = 0, 1, . . . , N1.

(4.4)
We implement (4.4) similarly to (2.12): all Λ’s are initialized to zero and each λ(yj)
is distributed among p2 neighboring YJ’s as depicted in Fig. 4.1.
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Λ(Y(J1,J2) ) Λ(Y(J1+1,J2) )

Λ(Y(J1+1,J2+1) )Λ(Y(J1,J2+1) )

λ(yj)

ωjJ2+1

ωjJ2

ωjJ1
ωjJ1+1

ωjJ1
ωjJ1+1

Fig. 4.1. An example of anterpolation in 2D for p = 2.

Similarly, using the smoothness of φ(‖x−YJ‖) as a function of x(1), x(2) for a
fixed YJ, we obtain

φ (‖xi −YJ‖) =
∑

I2∈σ
(2)
i

ωiI2

∑

I1∈σ
(1)
i

ωiI1φ
(∥

∥X(I1,I2) −YJ

∥

∥

)

+O(δI), i = 0, 1, . . . , m .

(4.5)

where for k = 1, 2, σ
(k)
i :=

{

Ik : |X(k)
Ik
− x

(k)
i | < pH/2

}

, ωiIk
are the centered pth-

order interpolation weights from the coarse evaluation point X
(k)
Ik

to x
(k)
i . Substituting

(4.5) into (4.3) gives

s(xi) =
∑

I2∈σ
(2)
i

ωiI2

∑

I2∈σ
(1)
i

ωiI1S
(

X(I1,I2)

)

+ O(n‖λ‖∞δI), i = 0, 1, . . . , m , (4.6)

where

S
(

X(I1,I2)

)

:=

N2
∑

J2=0

N1
∑

J1=0

Λ
(

Y(J1,J2)

)

φ
(∥

∥X(I1,I2) −Y(J1,J2)

∥

∥

)

,

I1 = 0, 1, . . . , M1, I2 = 0, 1, . . . , M2. (4.7)

Note that summing all the terms as is indicated above may not be necessary because
Λ
(

Y(J1,J2)

)

could be zero at some coarse level centers. This would occur, for example,
when the data fall on some smaller dimensional subset than [0, 1]2. We can also
truncate (4.7) to a neighborhood of XI for fast-decaying φ (e.g. GA):

S
(

X(I1,I2)

)

:=

N2
∑

J2=0

∑

J1:‖XI−YJ‖<cH

Λ
(

Y(J1,J2)

)

φ
(∥

∥X(I1,I2) −Y(J1,J2)

∥

∥

)

+O(n‖λ‖∞δT ), I1 = 0, 1, . . . , M1, I2 = 0, 1, . . . , M2, (4.8)
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where c ∈ N, and the truncation error δT depends on φ and c (and the dimension
d). If φ does not decay fast (or at all) as r → ∞ (e.g. MQ and IMQ), we resort to
c = max{N1, N2} (i.e. no truncation).

Our 2-D fast multilevel evaluation task of (4.1) thus consists of the following steps:

1. Anterpolation: for every j = 0, 1, . . . , n, compute the anterpolation weights
{ωjJk

}
Jk∈σ

(k)
j

, k = 1, 2. Then compute the coarse expansion coefficients

{Λ(YJ)}N
J=0 using (4.4).

2. Coarse Level Summation: evaluate S
(

X(I1,I2)

)

, I1 = 0, 1, . . . , M1, I2 =
0, 1, . . . , M2 using (4.8).

3. Interpolation: for every i = 0, 1, . . . , m, compute the interpolation weights
{ωiIk

}
Ik∈σ

(k)
i

, k = 1, 2. Then interpolate {S(XI)}MI=0 to {s(xi)}mi=0 using

(4.6).

The generalization to d > 2 dimensions follows by

• defining a “level H”, H = (H, H, . . . , H) (i.e. d components) consisting of

the d-dimensional Cartesian product of the uniform center-grid
{

Y
(k)
Jk

}Nk

Jk=0
,

and evaluation-grid
{

X
(k)
Ik

}Mk

Ik=0
, k = 1, 2, . . . , d;

• using centered, pth order, tensor product interpolation between the level h
and level H grids;
• generalizing equations (4.2)–(4.8) to d dimensions.

4.1. Complexity and Accuracy. We describe the complexity and accuracy
of the above algorithm for a general dimension d and for the case when {xi}mi=0

and {yj}nj=0 are uniformly distributed in [0, 1]d. We may thus make the simplifying
assumption that Nk = N and Mk = M , k = 1, 2, . . . , d, for appropriate values of M
and N . The accuracy of the algorithm does not change for non-uniformly distributed
points, but the work may be smaller for this case (e.g. if the centers are located on
a lower dimensional space of [0, 1]d, most terms in (4.7) are zero and need not be
summed). Uniform dense points provide the worst case estimate of the work.

Step 1 above consists of two parts. Computing the weights {ωjJk
}Jk

, k =
1, 2, . . . , d, requires O(pdn) operations (see Appendix A). Then (4.4) is executed
in O(pdn) operations. The truncated coarse sum in step 2 requires O((cM)d) opera-
tions. As discussed below, this cost can again be cut using the FFT. Step 3 consists of
computing {ωiIk

}Ik
, k = 1, 2, . . . , d, which costs O(pdm), and interpolating the level

H RBF expansion to level h for a cost of O(pdm). The algorithm’s complexity is thus

W ∼ (n + m)pd +
( c

H

)d

. (4.9)

Let ξ = (ξ1, ξ2, . . . , ξd) ∈ R
d. Then for even-order, p, tensor-product interpolation
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in d-dimensions, the error [42, §19] depends on bounds for the 2d − 1 terms

∂pφ(‖ξ‖)
∂ξp

j1

, 1 ≤ j1 ≤ d ,

∂2pφ(‖ξ‖)
∂ξp

j1
∂ξp

j2

, 1 ≤ j1 < j2 ≤ d ,

∂3pφ(‖ξ‖)
∂ξp

j1
∂ξp

j2
∂ξp

j3

, 1 ≤ j1 < j2 < j3 ≤ d ,

...
...

∂dpφ(‖ξ‖)
∂ξp

j1
∂ξp

j2
· · · ∂ξp

jd

, 1 ≤ j1 < j2 < · · · < jd ≤ d .

Because φ is radially symmetric and infinitely smooth, it is sufficient to express the
bounds in terms of

∂kpφ(‖ξ‖)
∂ξp

1∂ξp
2 · · ·∂ξp

k

, 1 ≤ k ≤ d . (4.10)

The coarse grid interpolations are centered, thus the error δI can be uniformly
bounded by [42, p. 32,217]

δI ≤
d
∑

k=1

(

d

k

)

[

Hp
[

Γ
(

p+1
2

)]2

p!π

]k
∥

∥

∥

∥

∂kpφ(‖ξ‖)
∂ξp

1∂ξp
2 · · · ∂ξp

k

∥

∥

∥

∥

∞

. (4.11)

In §5 we provide more explicit bounds for the GA, MQ, and IMQ radial kernels.
The truncation error δT in S(XI) due to (2.8) is again bounded by the “tail” of

φ in d dimensions. For every I = (I1, I2, . . . , Id),

δT ≤
2π

d
2

Γ
(

d
2

)

∫ ∞

cH

rd−1 |φ(r)| dr, (4.12)

where the constant in front of the integral is the surface area of the d-sphere.
We define the evaluation accuracy by the relative error norm (2.10). Using the

bounds on δI and δT , we obtain (assuming the condition number κ ∼ 1)

E ∼
d
∑

k=1

(

d

k

)

[

Hp
[

Γ
(

p+1
2

)]2

p!π

]k
∥

∥

∥

∥

∂kpφ(‖ξ‖)
∂ξp

1∂ξp
2 · · · ∂ξp

k

∥

∥

∥

∥

∞

+
2π

d
2

Γ
(

d
2

)

∫ ∞

cH

rd−1 |φ(r)| dr .

(4.13)
The algorithm’s efficiency is again determined by choosing the parameters H, p, c to
minimize W for a bounded accuracy E ≤ δ (or minimize E subject to a bounded
W ). The algorithm’s efficiency depends on φ and d. In §5 we show for a few specific
RBFs that by correctly choosing the parameters, the algorithm scales like O((n +
m) ln(1/δ)d).

Fast updates and parallelization can be efficiently organized similarly to the 1-D
case; see §2.2.

4.2. Fast Coarse Level Summation. We again assume that {xi}mi=0 and
{yj}nj=0 are uniformly distributed in [0, 1]d (this is again not necessary for our al-

gorithm, but makes the complexity analysis easier). Similarly to the 1-D algorithm,
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when the evaluation points {xi}mi=0 are not far outside the convex hull of the centers
{yj}nj=0 and vice versa, the coarse evaluation points can be set equal to the coarse
centers, viz. M = N, and Nk = N , k = 1, 2, . . . , d. The coarse level summation
(2.7) then again amounts to a matrix vector product similar to (1.2). In this case,
however, Φ is a symmetric d-level recursive block Toeplitz matrix [35]. Using the al-
gorithm of Lee [35, 36], we can multiply this matrix vector product in O(Nd lnN)
operations. When no coarse level truncation is performed (i.e c = N) this greatly
reduces the O(N2d) complexity of (2.7). With this additional trick, the complexity of
the algorithm thus becomes

W ∼ (n + m)pd +
1

Hd
min

{

cd, ln
1

H

}

, (4.14)

which scales linearly with n and m.

5. Applications to Specific Kernels in d ≥ 2 Dimensions. We discuss the
accuracy and complexity of the d-dimensional algorithm applied to the GA, MQ, and
IMQ kernels and postpone the numerical experiments until §6.

5.1. GA Kernel. Let φ(r) = e−(εr)2 . By changing variables to t = (εr)2, the
following bound on the truncation error (4.12) is obtained:

δT ≤
π

d
2

Γ
(

d
2

)

εd

∫ ∞

(cHε)2
t

d
2−1e−tdt =

(√
π

ε

)d Γ
(

d
2 , (cHε)2

)

Γ
(

d
2

) .

For d ≥ 2, the incomplete gamma function can be bounded as follows [26]:

Γ
(

d
2 , (cHε)2

)

Γ
(

d
2

) < 1−
(

1− e−(cHε)2(Γ(d/2+1))−2/d
)d/2

.

The bounds on (4.10) for the GA kernel are derived in Appendix B and are
given by (B.3). Combining these bounds with the truncation error bounds and using
Stirling’s asymptotic formula (3.3), we obtain the accuracy estimate

E ∼
d
∑

k=1

(

d

k

)(

2√
πp

)k (Hε
√

p√
2e

)kp

+

(√
π

ε

)d [

1−
(

1− e−(cHε)2(Γ(d/2+1))−2/d
)d/2

]

.

(5.1)
Requiring Hε

√
p < b

√
2e for some 0 < b < 1, the first term becomes

d
∑

k=1

(

d

k

)(

2√
πp

)k (Hε
√

p√
2e

)kp

∼ bp .

We can thus bound the first term in (5.1) by O(δ) by choosing p = O(ln(1/δ)).
Therefore, H and p asymptotically behave like (3.5) and (3.7), respectively.

The second term in (5.1) is bounded by O(δ) if

1

Hε

[

Γ

(

d

2
+ 1

)]1/d






ln






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1−
(

1− εdδ
πd/2

)2/d













1
2

. c,

17



provided ε <
√

π/δ1/d. W is minimized if and only if c is, hence we choose (keeping
only the main terms)

c ∼
[

Γ

(

d

2
+ 1

)]1/d [

ln

(

1

εdδ

)

ln
1

δ

]
1
2

(5.2)

Using the above results on H , p, and c in (4.9), we can evaluate (4.1) for the GA RBF
in

W ∼ O

(

(

ln
1

δ

)d

(n + m) + Γ

(

d

2
+ 1

)[

ln

(

1

εdδ

)

ln
1

δ

]
d
2

εd

)

(5.3)

operations (for d = 1, this is identical to (3.8)). For ε . n1/d, W scales linearly with
n and m. Like the 1-D algorithm, if ε ≫ n then the original sum can be truncated
similarly to (4.8) and directly evaluated in O(n + m) operations.

5.2. MQ Kernel. Let φ(r) = (1 + (εr)2)
1
2 . We set c = Nmax = max1≤k≤d Nk

because φ grows as r → ∞. The bounds on (4.10) for MQ are given by (B.8) with
ν = 1. Using this result and Stirling’s asymptotic formula (3.3) we obtain the accuracy
estimate

E ∼
d
∑

k=1

(

d

k

)
√

2

kp

(

2√
πp

)k
(

Hεp
√

k

2e

)kp

. (5.4)

Requiring Hεp
√

d < 2eb for some 0 < b < 1, the whole sum is asymptotic to bp. We
can thus bound E by O(δ) by choosing p = O(ln(1/δ)). Therefore,

H ∼ 1

εp
√

d
(5.5)

p ∼ ln
1

δ
. (5.6)

In practice, p is rounded to the next even integer.
Using the above results on H , p, and noting that c ∼ 1/H , then from (4.9), we

can evaluate (4.1) for the MQ RBF in

W ∼ O

(

(

ln
1

δ

)d

(n + m) +

(

ε
√

d ln
1

δ

)2d
)

(5.7)

operations. Hence, the algorithm scales linearly with n and m for all ε . n1/(2d). For
larger ε, W is dominated by the coarse level summation. As discussed in §4.2, we

can reduce the complexity of this operation to O

(

(

ε
√

d ln(1/δ)
)d

ln
(

ε
√

d ln(1/δ)
)d
)

with the FFT.

5.3. IMQ Kernel. Let φ(r) = (1 + (εr)2)−
1
2 . This kernel does not decay fast

enough, so we again set c = Nmax = max1≤k≤d Nk. The bounds on (4.10) applied
for IMQ are given by (B.8) with ν = −1. Using this result and Stirling’s asymptotic
formula (3.3), we obtain the accuracy estimate

E ∼
d
∑

k=1

(

d

k

)√
2

(

2√
πp

)k
(

Hεp
√

k

2e

)kp

. (5.8)
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By choosing H and p according to (5.5) and (5.6), respectively, we obtain the same
accuracy estimates as the MQ kernel. We thus do not elaborate further on the IMQ
kernel.

6. Numerical Results. We verify the complexity and accuracy results of our
algorithm for a set of test examples similar to those presented in [39]. In all experi-
ments, we set ε = (n1/2d)/4, select expansion coefficients {λ(yj)}nj=0 randomly from

[−1, 1], and measure the relative error E according to (2.10). In all cases, the reported
results are averaged over at least five different random choices of {λ(yj)}nj=0. Note
that in all but the last test problem, the fast coarse summation technique of §4.2 is
not employed.

To guarantee the accuracy of the algorithm is O(δ), the input parameters p, c, H
for the different φ are chosen as follows:

• GA kernel. We choose δI = δT = δ/2 to enforce δI + δT ≤ δ. For H and p
we use the same 1-D values given by (3.9) and (3.10), respectively. For c, we
use the value

c =
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










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
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


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


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
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

1

1−
(

1− εdδ
2πd/2

)2/d






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
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,

0 ε ≥ √π

(

2
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)1/d

.

• MQ and IMQ kernels. No truncation is performed (i.e. δT = 0);

H =
2eb

εp
√

d
,

where p is given by (3.17); and p is given by (3.19).
The paramters could be further optimized by optimizing b for each test case; this is
not necessary because good results are obtained for a wide range of b values. In all
the following results, b was chosen in [0.25, 0.35].

Example 1. We consider evaluation with the GA kernel with n centers {yj}nj=0

and m = n evaluation points {xi}mi=0 uniformly distributed in [0, 1]2 (they do not
necessarily coincide). Table 6.1 shows the relative error E of our fast evaluation
method. As expected, E < δ in all cases. Table 6.2 similarly compares the number
of operations required for our method versus a direct evaluation. The work scales as
W ≈ α (ln(1/δ))

2
(n + m), where 2.3 < α < 6.2.

n = m δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10

1000 7.67 · 10−3 2.68 · 10−5 1.22 · 10−7 2.81 · 10−9 1.29 · 10−11

2000 5.37 · 10−3 2.60 · 10−5 6.86 · 10−8 3.88 · 10−9 1.67 · 10−11

4000 7.76 · 10−3 2.81 · 10−5 1.41 · 10−7 2.29 · 10−9 9.12 · 10−12

8000 7.37 · 10−3 2.40 · 10−5 1.25 · 10−7 2.61 · 10−9 1.19 · 10−11

16000 6.96 · 10−3 3.30 · 10−5 9.78 · 10−8 2.69 · 10−9 1.29 · 10−11

Table 6.1

Relative error E of the multilevel evaluation method for Example 1 (GA kernel and uniform
distribution in [0, 1]2).
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n δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10 direct

1000 222390 755430 2127278 3344730 6619962 8.0 · 106

2000 409350 1400574 3252254 5329450 9885050 3.2 · 107

4000 773678 2416630 5528558 8625914 15167242 1.28 · 108

8000 1483126 4482486 9628334 14335274 25401362 5.12 · 108

16000 2879694 8308262 17660518 25416082 42800330 2.048 · 109

Table 6.2

Comparison of the work (number of floating-point operations) W required of the multilevel
evaluation method for Example 1. The right column indicates the number of operations required for
a direct evaluation.

Example 2. We consider non-uniformly distributed points in [0, 1]2 with the MQ
kernel. The n centers are randomly placed within one tenth of the diagonal of the unit
square (“track data”), while the m = n evaluation points are uniformly distributed in
[0, 1]2. Table 6.3 shows the relative error E of our fast evaluation method. Similarly
to the 1-D example of §3.2.1, we see that E ≪ δ, especially as δ → 0 (i.e. as p
grows). This is most likely because our asymptotic error bound for (5.4) does not
account for the pk/2+1 quantity in the denominator of the terms in the summation.
The complexity W for this example is similarly presented in Table 6.4. Again, the
method scales linearly with n and m. We observe that for smaller δ the break-even
point between our fast method and the direct method occurs for larger n (e.g., for
δ = 10−10, at n ≈ 2500). However, in these cases the actual error E ≪ δ and is close
to machine precision; still, for E ≥ 10−10 our method is faster than direct summation
for all n ≥ 1000.

n = m δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10

1000 2.61 · 10−4 1.91 · 10−7 2.51 · 10−10 2.25 · 10−13 6.26 · 10−15

2000 1.51 · 10−4 1.60 · 10−7 1.02 · 10−10 3.15 · 10−13 1.17 · 10−14

4000 2.14 · 10−4 1.53 · 10−7 1.91 · 10−10 1.07 · 10−13 7.47 · 10−15

8000 3.98 · 10−4 1.20 · 10−7 1.38 · 10−10 1.27 · 10−13 1.27 · 10−14

16000 1.19 · 10−4 6.64 · 10−8 9.12 · 10−11 1.33 · 10−13 3.65 · 10−14

Table 6.3

Relative error E of the multilevel evaluation method for Example 2 (MQ kernel and track data).

n = m δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10 direct

1000 392802 1511234 5049898 12628610 33812486 8.0 · 106

2000 687802 2516386 7326882 19076506 47297334 3.2 · 107

4000 1311362 4236162 11561786 28960970 69457774 1.28 · 108

8000 2599938 7427058 19664850 46111210 110157894 5.12 · 108

16000 5024234 13636026 32958874 75800306 172780942 2.048 · 109

Table 6.4

Comparison of the work (number of floating-point operations) W required of the multilevel
evaluation method for Example 2. The right column indicates the number of operations required for
a direct evaluation.

Example 3. We use the same “track data” setup as Example 2, but investigate the
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case where n ≪ m, which typically occurs in applications. The exact relationship is
m = 10n evaluation points uniformly distributed in [0, 1]2. The relative error for this
example is shown in Table 6.5. The observed E ≪ δ can again be explained as in
Example 2. Table 6.4 displays the operation count, which grows linearly with n and
m. Here whenever the measured E is O(δ), the complexity of our fast evaluation is
lower than a direct evaluation.

m δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10

2000 3.12 · 10−4 2.72 · 10−7 3.04 · 10−10 3.53 · 10−13 4.63 · 10−15

4000 2.59 · 10−4 2.17 · 10−7 2.30 · 10−10 2.94 · 10−13 5.80 · 10−15

8000 2.98 · 10−4 2.35 · 10−7 2.67 · 10−10 3.20 · 10−13 7.22 · 10−15

16000 2.52 · 10−4 2.26 · 10−7 2.53 · 10−10 3.14 · 10−13 9.02 · 10−15

32000 3.18 · 10−4 2.60 · 10−7 2.80 · 10−10 3.38 · 10−13 1.72 · 10−14

64000 1.49 · 10−4 8.68 · 10−8 9.37 · 10−11 1.33 · 10−13 1.25 · 10−14

Table 6.5

Relative error E of the multilevel evaluation method for Example 3 (MQ kernel, track data,
and m = 10n).

m δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10 direct

2000 372234 1164906 3172234 7533306 19002414 3.200 · 106

4000 717634 1975122 5092482 11646866 26958734 1.280 · 107

8000 1364834 3665794 8366586 17364106 41132334 5.120 · 107

16000 2686602 6662458 14243802 29371442 63761742 2.048 · 108

32000 5308962 12680186 25961810 50172050 104153542 8.192 · 108

64000 10530994 24709058 48637778 87890530 173708942 3.277 · 109

Table 6.6

Comparison of the work (number of floating-point operations) W required of the multilevel
evaluation method for Example 3. The right column indicates the number of operations required for
a direct evaluation.

Example 4. We consider evaluation of the IMQ kernel with n centers and m = n
evaluation points uniformly distributed in [0, 1]3. This simulates force calculation in
an n-body simulation with the Plummer potential [39]. Table 6.7 displays the relative
error, and again E is well below δ. Table 6.8 shows operation counts; here we use the
FFT coarse summation (§4.2). The algorithm scales linearly with n, m and (ln(1/δ))q

where q ≈ 2.5 (i.e. slightly better than the expected q = 3, for n ≤ 105). Our method
is faster than direct summation in all cases except n = 5000 and δ = 10−10 (where
again E ≈ 10−14 ≪ δ).

6.1. Comparison with Other Fast Methods. Preliminary results comparing
the performance of the multilevel approach with FMM and FGT for various smooth
kernels and expansion coefficients suggest that the multilevel approach has a uni-
formly bounded evaluation error for all ε, whereas the other methods may have an
uncontrolled error (or uncontrolled complexity) for some regions of the shape param-
eter. However, more extensive and systematic comparison of the methods is called
for, which is left to a future paper.
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n = m δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10

5000 1.91 · 10−3 8.85 · 10−7 3.65 · 10−9 1.84 · 10−12 2.62 · 10−14

10000 3.63 · 10−3 1.90 · 10−6 8.39 · 10−9 4.79 · 10−12 4.17 · 10−14

20000 2.19 · 10−3 1.11 · 10−6 4.43 · 10−9 2.64 · 10−12 3.61 · 10−14

40000 2.72 · 10−3 1.25 · 10−6 5.16 · 10−9 3.13 · 10−12 6.07 · 10−14

80000 2.71 · 10−3 1.12 · 10−6 4.42 · 10−9 2.31 · 10−12 5.36 · 10−14

100000 1.69 · 10−3 6.68 · 10−7 2.56 · 10−9 1.40 · 10−12 6.05 · 10−14

Table 6.7

Relative error E of the multilevel evaluation method with fast coarse level summation for Ex-
ample 4 (IMQ kernel and uniform distribution in [0, 1]3).

n = m δ = 10−2 δ = 10−4 δ = 10−6 δ = 10−8 δ = 10−10 direct

5000 3.02 · 106 2.91 · 107 5.86 · 107 1.35 · 108 2.83 · 108 2.75 · 108

10000 6.16 · 106 4.15 · 107 8.14 · 107 2.78 · 108 5.83 · 108 1.10 · 109

20000 1.06 · 107 6.61 · 107 1.66 · 108 3.97 · 108 8.29 · 108 4.40 · 109

40000 1.95 · 107 1.15 · 108 2.57 · 108 6.34 · 108 1.32 · 109 1.76 · 1010

80000 3.93 · 107 2.32 · 108 4.39 · 108 1.28 · 109 2.67 · 109 7.04 · 1010

100000 4.82 · 107 2.82 · 108 5.31 · 108 1.52 · 109 3.16 · 109 1.10 · 1011

Table 6.8

Comparison of the work (number of floating-point operations) W required of the multilevel
evaluation method for Example 4 with fast coarse level summation. The right column indicates the
number of operations required for a direct evaluation.

7. Concluding Remarks. We presented a fast RBF evaluation algorithm for
smooth radial kernels. It applies to other applications of many-body interactions with
smooth kernels (e.g., image processing and atomistic simulations). The algorithm
scales linearly with the number of centers and with the number of evaluation points.
Each additional evaluation can be performed separately and costs O((ln(1/δ)d)) where
δ is the desired accuracy and d is the dimension. Numerical results with GA and GMQ
RBFs fit the theoretical accuracy and work estimates. This fast evaluation will hope-
fully provide an important tool that will be easily implemented and integrated into
existing RBF interpolation/approximation software, and will allow faster solutions
of large-scale interpolation problems. We plan to expand the Matlab code whose
results were presented here, to a general-purpose library of fast RBF expansion eval-
uations. Directions for future research follow.

Piecewise Smooth RBFs. The evaluation algorithm can be generalized to piece-
wise smooth kernels as developed in [11, 14, 37]. Here O(ln n) levels must be employed
rather than two. The kernel is decomposed into a smooth (interpolated from a coarse
level) and a local (directly summed) parts via “kernel softening” near r = 0 [11].
To control the local part’s evaluation complexity, local grid refinements should be
employed at areas of high center/evaluation point densities [13].

Fast Fitting. The fast evaluation provides fast matrix-vector multiplication to be
integrated to any of the existing iterative methods such as Krylov-subspace method
[2, 3, 21, 22, 23]. Moreover, for some piecewise smooth kernels (e.g. GDS) the fitting
problem can be solved by a multigrid cycle within a Full Multigrid (FMG) algorithm,
along the lines of [12]. The fast evaluation is again employed to compute residuals.
The cost of solving the fitting problem to a reasonable tolerance (analogous to the
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truncation errors in discretizing (1.3) at the centers) is equivalent to 2−3 evaluations
of s at all centers.
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Appendix A. Calculation of interpolation weights in O(p) operations.

The 1-D pth-order polynomial that interpolates {fj}p−1
j=0 at {xj}p−1

j=0 can be conve-
niently expressed using the barycentric formula [8]

q(x) =

p−1
∑

j=0

cj

x− xj
fj

p−1
∑

j=0

cj

x− xj

=

p−1
∑

j=0








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cj

x− xj

p−1
∑

i=0

ci

x− xi








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fj =:

p−1
∑

j=0

ωjfj , (A.1)

where cj = (
∏

i6=j(xj − xi))
−1, j = 0, 1, . . . , p − 1. For equally spaced {xj}p−1

j=0 , it is

shown in [8, p.505] that, up to a multiplicative constant, cj = (−1)j
(

p−1
j

)

. Because
the cj appear symmetrically in the numerator and denominator, the multiplicative

constant is inconsequential and {cj}p−1
j=0 can be precomputed once-for-all. Given x,

the Lagrange interpolation weights {ωj}p−1
j=0 are thus computed in O(p) operations

using the following algorithm.

ω̃j ←− cj/(x− xj), j = 0, . . . , p− 1

ω̃ ←−
p−1
∑

j=0

ω̃j

ωj ←− ω̃j/ω̃, j = 0, . . . , p− 1.

One should be careful about the numerical stability of the computation. In the second
step, for instance, {ω̃j}p−1

j=0 should be sorted to minimize floating-point arithmetic
round-off.

Appendix B. Bounds on the derivatives of φ(r). The GA kernel plays a
central role in deriving the bounds for (4.10), thus we first consider it. We use the
well-known result

e−(ε‖ξ‖)2 =





1

πk/2
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0
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2

, 1 ≤ k ≤ d , (B.1)

Thus, it sufficient to prove bounds for d = 1 and then extend them inductively to any
d > 1. Recalling that p is even, we have for d = 1 that
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∥
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The last equality follows from [1, p. 933]. By induction, we thus obtain
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∥

∥

∥
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)k

, 1 ≤ k ≤ d. (B.3)

To derive the bounds for the MQ and IMQ kernels we need the following definition:
Definition B.1. A function Φ is said to be completely monotone on [0,∞) if
1. Φ ∈ C [0,∞)
2. Φ ∈ C∞ (0,∞)

3. (−1)ℓ dℓ

drℓ
Φ(r) ≥ 0 for r > 0 and ℓ = 0, 1, 2, . . .

Many radial kernels φ(r) used in RBF interpolation have the property that
Φ(r) = φ(

√
r) is completely monotone because then the existence and uniqueness

of an interpolant is guaranteed [15, §2.1]. For example, the GMQ kernel with ν < 0
(see Table 1) can be easily shown to have this property. Completely monotone func-
tions are also classified by the Bernstein-Widder theorem [18, Ch.14]:

Theorem B.2. A function Φ(r), r ≥ 0, is completely monotone if and only if it
can expressed in the form

Φ(r) =

∫ ∞

0

e−srdµ(s), (B.4)

where µ is a nondecreasing bounded measure.
For radial kernels that satisfy Φ(r) = φ(

√
r) is completely monotone, this theorem

allows them to be related to the GA kernel. We can thus use the bounds (B.3) to
obtain bounds on (4.10) for these kernels (the validity for differentiating under the
integral sign in (B.4) is justified in [18, p.97]). We illustrate the bounding procedure
for the GMQ kernel with ν < 0, which has the Bernstein-Widder form

(1 + (ε‖ξ‖)2)ν/2 =
1

Γ(− ν
2 )
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0

e−s

sν/2+1
e−s(ε‖ξ‖)2ds , ν < 0, (B.5)

as is easily verified by Mathematica. For d = 1, make the substitution
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Differentiating under the integral of (B.5) then gives the bounds
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The last equality follows from the definition of the Gamma function [1, p.255]. Using
the GA kernel property (B.1), the bounds
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follow by induction.
To obtain the bounds for the MQ kernel (i.e. ν = 1), we again need to relate it to

the GA kernel. The following theorem of Sun (c.f. [18, p.110]) provides the relation:
Theorem B.3. Let Φ(r) ∈ C∞(0,∞), continuous at zero, and d

drΦ(r) be com-
pletely monotone but not constant on (0,∞). Then it is necessary and sufficient that
Φ(r) have the form

Φ(r) = Φ(0) +

∫ ∞

0

1− e−sr

s
dµ(s) , r ≥ 0, (B.6)

for some nontrivial Borel measure µ : [0,∞)→ R satisfying
∫

(1,∞) s−1dµ(s) <∞ and

µ((0, t)) <∞ for all t.
For radial kernels φ(

√
r) = Φ(r) satisfying this requirement (e.g. GMQ with

0 < ν < 2), we can thus use the GA kernel bounds (B.3) to obtain the desired bounds
(4.10). The GMQ kernel with 0 < ν < 2, can be expressed in the form (B.6) as follows

(1 + (ε‖ξ‖)2)ν/2 = 1− 1

Γ(− ν
2 )

∫ ∞

0

e−s

sν/2

(

1− e−s(ε‖ξ‖)2

s

)

ds , 0 < ν < 2. (B.7)

as is easily verified by Mathematica. Upon differentiating, the terms independent of
ξ vanish and we are left with the exact same problem as the GMQ kernel with ν < 0.
Thus, we have the general result

∥

∥

∥

∥

∂kp(1 + (ε‖ξ‖)2)ν/2

∂ξp
1∂ξp

2 · · · ∂ξp
k

∥

∥

∥

∥

∞

≤
(

p!εp

(p/2)!

)k
∣

∣

∣

∣

∣

Γ(kq−ν
2 )

Γ(− ν
2 )

∣

∣

∣

∣

∣

, 1 ≤ k ≤ d, ν < 2. (B.8)

The MQ and IMQ bounds are given by ν = 1 and ν = −1, respectively. We expect
similar result for ν > 2 by integrating (B.6) the necessary number of times.
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