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Abstract. A collection of algorithms is described for numerically computing with smooth
functions defined on the unit disk. Low rank approximations to functions in polar geometries are
formed by synthesizing the disk analogue of the double Fourier sphere method with a structure-
preserving variant of iterative Gaussian elimination that is shown to converge geometrically for certain
analytic functions. This adaptive procedure is near-optimal in its sampling strategy, producing
approximants that are stable for differentiation and facilitate the use of FFT-based algorithms in
both variables. The low rank form of the approximants is especially useful for operations such as
integration and differentiation, reducing them to essentially 1D procedures, and it is also exploited to
formulate a new fast disk Poisson solver that computes low rank approximations to solutions. This
work complements a companion paper (Part I) on computing with functions on the surface of the
unit sphere.
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1. Introduction. Polar geometries play a central role in scientific computing,
with applications in fluid dynamics [22,36], optics [25], and astrophysics [15,32]. Ad-
vances in these areas require effective representations for functions on the unit disk,
and compressed representations of such functions have become increasingly important.
We develop a novel variant of iterative Gaussian elimination (GE) that adaptively con-
structs low rank approximants with near-optimal compression properties; this enables
fast and spectrally accurate computations with functions on the disk.

Methods that represent functions on the disk with expansions in the Chebyshev–
Fourier basis allow for the use of fast transforms [11, 12, 37], but may not maintain
regularity at the origin of the disk when used with GE. Alternatively, representations
employing expansions that incorporate regularity in the basis are not readily asso-
ciated with fast transforms [47]. Unsatisfied with having to choose between either
regularity at the origin or fast transforms, we propose an approach that attempts to
prioritize both. Combining low rank function approximation with an interpolation
method that samples functions over the unit disk in a way that is analogous to the
double Fourier sphere (DFS) method [12], we construct approximants with several
desirable properties: (1) A structure that permits the use of fast transforms based on
the fast Fourier transform (FFT) in both variables, (2) regularity over the origin of the
disk, and (3) a near-optimal underlying interpolation grid that does not oversample
near the origin.

Using this idea, we have created an integrated computational framework for
working with functions in polar geometries. This includes the development of algo-
rithms for integration, function evaluation, vector calculus, and a fast Poisson solver.
Our software is publicly available through the open source Chebfun software sys-
tem written in MATLAB [10]. This development allows investigators to compute
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in polar geometries without concern for the underlying discretization or procedural
details, providing an intuitive platform for data-driven computations, explorations
and visualizations with functions on the unit disk. Various examples are available at
www.chebfun.org/examples for the reader to explore.

Part I of this two-part series of papers developed a structure-preserving, iterative
variant of Gaussian elimination (GE) for computing with functions on the surface of
the unit sphere [43]. Here, we extend the ideas of [43] to functions defined on the
unit disk. We also include several new results that were not discussed in Part I. In
Section 3.4, we prove that our structure-preserving GE procedure converges geometri-
cally for functions that are analytic in a sufficiently large region in the complex plane.
Section 5 describes a new Poisson solver that constructs near-optimal low rank ap-
proximations to solutions, and is conceptually quite different from the Poisson solver
described in [43]. Additional new results include a weighted singular value decompo-
sition algorithm (Section 4.5), and an extended discussion on the near-optimality of
the GE procedure (Section 3.5).

The paper is structured as follows: First, we review existing techniques for com-
puting with functions on the disk (Section 2), including a discussion of the disk ana-
logue to the DFS method. A brief review of low rank function approximation in
Section 3 is followed by a detailed description of the structure-preserving GE proce-
dure applied to functions on the disk. A collection of fast algorithms for computing
with the resulting low rank approximants is given in Section 4, and a fast disk Poisson
solver for computing solutions in low rank form is described in Section 5.

2. Existing techniques for computations on the disk. There is an exten-
sive literature on numerical methods for computing with functions on the disk. An
overview in the context of solving Poisson’s equation is given in [7]. We briefly review
a selection of these strategies.

2.1. Radial basis functions. As a mesh-free method, radial basis functions can
be used for applications on many types of geometries [13]. Specific studies of global ap-
proximations on the disk include [19,21], where the interpolation points are arranged
so that the computational cost of the method reduces from O(N3) to O(N logN) op-
erations, where N is the number of function samples taken. Ill-conditioning can cause
a loss of 3-5 digits of accuracy in problems of moderate size, but in most applications,
this is perfectly acceptable. However, this prevents the construction of approximants
that are accurate to machine precision, which is what we require.

2.2. Conformal mapping. Using the inverse of the cosine leminiscate function,
a function f on the unit disk can be mapped conformally to the unit square [1,
35]. This mapping avoids introducing a potentially problematic singularity at the
origin and allows f to be expressed as a bivariate Chebyshev expansion so that FFT-
based transforms are applicable. Unfortunately, the mapping introduces four new
artificial singularities corresponding to the corners of the square. Interpolation points
unnaturally cluster near these singularities, resulting in excessive oversampling that
diminishes the computational efficiency gained from the use of the FFT. In contrast,
our approach enables the use of FFT-based transforms, while employing low rank
approximation to avoid overresolving functions near the origin.

2.3. Basis expansions. A function f(x, y) defined in Cartesian coordinates on
the unit disk can be converted to a function in polar coordinates, f(θ, ρ), through the
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transformation

x = ρ cos θ, y = ρ sin θ, (θ, ρ) ∈ [−π, π]× [0, 1]. (2.1)

This change of variables relates a function on the disk to a function defined on a
rectangular domain, where advantageous algorithms can often be employed. Noting
that functions on the disk are periodic in the angular variable, θ, a sufficiently smooth
function f can be approximated by a Fourier expansion:

f(θ, ρ) ≈
n/2−1∑
k=−n/2

φk(ρ)eikθ, (θ, ρ) ∈ [−π, π]× [0, 1], (2.2)

where n is an even integer. It is not obvious what expansion should be employed for
representing the function φk(ρ). Three common choices are:
• Bessel expansions: A natural analogue of the trigonometric and spherical har-

monic expansions, Bessel expansions are derived from the eigenfunctions of the
Laplace operator in polar coordinates [9]. Here, assuming that f(θ, 1) = 0 for

θ ∈ [−π, π], we write φk(ρ) =
∑m−1
`=0 a`kJk(ωk`ρ), ρ ∈ [0, 1], where Jk(z) is the

kth order Bessel function, and ωk` is the `th positive root of Jk(z) [29, (10.23)].
The expansion can also be modified to allow for functions that are nonzero at the
boundary of the disk. This choice guarantees the expansion is smooth at the origin,
but to compute the expansion coefficients, one must approximate integrals involv-
ing Bessel functions. While fast algorithms for such computations exist, they are
particularly effective only when the parameter k is small [20,39]. More generalized
algorithms typically involve significant precomputational costs [31], and this limits
their effectiveness in a regime where functions are resolved on adaptive grids.

• One-sided Jacobi polynomial expansions: Writing φk(ρ) as an expansion over
the one-sided Jacobi polynomials results in an expansion of f(θ, ρ) in the Zernike
polynomial basis [5, 48]. This set of polynomials is considered theoretically anal-
ogous to the Legendre polynomials due to its orthogonality properties [5], and is
often the basis of choice for approximation on the disk. More recently, a whole
hierarchy of bases related to the one-sided Jacobi polynomials were employed to
capture the regularity of vector- and tensor-valued functions on the disk [47]. As
before, this choice guarantees the expansion is smooth at the origin, but fast algo-
rithms for computing the expansion coefficients are not efficient in our setting due
to precomputational costs [31].

• Chebyshev expansions: Expanding φk(ρ) in the Chebyshev basis results in a
truncated Chebyshev–Fourier expansion of f , i.e.,

f(θ, ρ) ≈
n/2−1∑
k=−n/2

m−1∑
`=0

a`kT`(2ρ− 1)eikθ, (θ, ρ) ∈ [−π, π]× [0, 1], (2.3)

where T` is the degree ` Chebyshev polynomial defined on [−1, 1]. Given samples
of f on an m × n Chebyshev–Fourier tensor product grid over [−π, π] × [0, 1], the
coefficients in (2.3) can be computed in O(mn log(mn)) operations via the FFT.
Unfortunately, this grid is artificially clustered near ρ = 0 [12], and this choice of
basis does not naturally impose any regularity at ρ = 0. Our approach alleviates
both of these drawbacks by combining the disk analogue to the DFS (see Section 2.4)
with a structure-preserving low rank construction procedure (see Section 3).
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Fig. 1. The disk analogue of the DFS method applied to the Nobel prize medal. (a) The medal.
(b) The projection of the medal using polar coordinates. (c) The medal after applying the disk
analogue to the DFS method. This is a BMC-II “function” that is periodic in θ and defined over
ρ ∈ [−1, 1].

2.4. The disk analogue of the double Fourier sphere method. The disk
analogue of the DFS method proceeds by constructing a Chebyshev–Fourier expansion
of a function defined on [−π, π] × [−1, 1], instead of [−π, π] × [0, 1]. This strategy
“doubles” f over the disk in the sense that f is sampled twice, but ρ = 0 is no
longer treated as a boundary. Mathematically, this doubled extension of f , which we
will call f̃ , can be expressed by defining g(θ, ρ) and h(θ, ρ) on [0, π] × [0, 1], so that
g(θ, ρ) = f(θ − π, ρ) and h(θ, ρ) = f(θ, ρ). Then,

f̃(θ, ρ) =


g(θ + π, ρ), (θ, ρ) ∈ [−π, 0]× [0, 1],

h(θ, ρ), (θ, ρ) ∈ [0, π]× [0, 1],

g(θ,−ρ), (θ, ρ) ∈ [0, π]× [−1, 0],

h(θ + π,−ρ), (θ, ρ) ∈ [−π, 0]× [−1, 0].

(2.4)

This idea is conceptually analogous to the DFS method [28], which is used for ap-
proximating functions on the surface of the unit sphere [43].

A useful connection between the DFS method and its disk analogue is the presence
of similar structure in the extended functions. We observe in (2.4) that f̃ possesses
block-mirror centrosymmetric (BMC) structure [43], and refer to functions that sat-
isfy (2.4) as BMC functions.

The BMC structure of f̃ can be intuitively described as

f̃ =

[
g h

flip(h) flip(g)

]
, (2.5)

where flip refers to the MATLAB command that reverses the order of the rows of a
matrix. This is also called a glide reflection in group theory [26, §8.1].

In addition to having BMC structure and being periodic in θ, f̃ must be constant
along the line representing the origin of the disk, ρ = 0. This feature of f̃ is not
shared by all BMC functions. For example, the BMC function f̃(θ, ρ) = sin 2θ cos 2ρ
is not constant along f̃(θ, 0) for θ ∈ [−π, π], and therefore does not correspond to a
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continuous function on the disk. To capture this important aspect of BMC functions
associated with the disk, we define the following variant:

Definition 2.1. (BMC-II function) A function f̃ : [−π, π] × [−1, 1] → C is a
Type-II BMC (BMC-II) function if it is a BMC function and f(·, 0) = α, where α is
a constant.

An analogous variant for computing on the sphere, the BMC-I function, is defined
to be constant along two lines corresponding to the north and south poles of the
sphere [43].

Figure 1 displays the analogue of the DFS method applied to the Nobel Prize
medal and illustrates BMC-II structure. Since every function f on the disk corre-
sponds to a BMC-II function f̃ that is 2π-periodic in θ, we apply our approximation
technique and all subsequent algorithms on f̃ , with rigid adherence to preserving the
BMC-II structure at every step. Calculations performed on f̃ always correspond to a
computation on the original function, f , and consistently remain associated with the
geometry of the disk. For example, smooth functions with BMC-II structure are al-
ways continuously differentiable over ρ = 0. In Section 4, we discuss the differentiation
of BMC-II functions in more detail.

The strategy of doubling up interpolation grids on the disk to reduce the re-
dundancy of sampling near ρ = 0 in spectral collocation methods is well estab-
lished [12, 44], and several variants have been proposed [11, 18, 37]. These doubling
strategies alleviate some, but not all, of the issues associated with oversampling near
the origin. Our approach is different in that it combines a doubling strategy with a
low rank approximation procedure. Low rank methods provide compressed represen-
tations of functions and can therefore further alleviate issues related to the overreso-
lution of functions near the origin of the disk (see Figure 4).

2.5. Software. Our software for computing with functions on the unit disk is
called Diskfun.1 It is implemented within MATLAB as a part of Chebfun [10], and
is accessed through the creation of objects called diskfuns. Below, we display the
MATLAB code used to represent the function

f(θ, ρ) = cos
(
3πρ

)
+ sin

(
2ρ sin θ − .4

)
as a diskfun object:

f = diskfun(@(t,r) cos(3*pi*r)+sin(2*r.*sin(t)-.4),’polar’)
f =

diskfun object:
domain rank vertical scale
unit disk 13 2

The printout provides the numerical rank of the function, discussed in Section 3, and
it also displays the vertical scale, an approximation of the absolute maximum value
of f .

The default setting of Diskfun assumes that functions are supplied in Cartesian
coordinates. However, diskfun objects can be constructed from function handles in
polar coordinates by adding the flag ‘polar’ to the construction command, as shown
above. Once a diskfun is created, users have access to a large number of algorithms
tailored to functions defined on the disk via overloaded MATLAB commands (see

1
After our software was developed and posted on GitHub, another software system named “disk-

fun” was released in the Approxfun software system written in Julia. It is not related to this work.
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Section 4). For example, integration of f is performed by the sum command, and
differentiation is performed by diff.

3. Low rank approximation for functions on the disk. In [41], a low rank
approximation method for computing with 2D functions on bounded rectangular do-
mains is described. The authors construct compressed representations of bivariate
functions that facilitate the use of essentially 1D algorithms in subsequent compu-
tations. This makes it especially useful in relation to Chebfun, where efficient 1D
procedures are well established and highly optimized. Here, we develop an analogous
technique for the polar setting.

A nonzero function f̃(θ, ρ) is a rank 1 function if it can be written as a product
of two univariate functions, i.e., f̃(θ, ρ) = c(ρ)r(θ). A function f̃ is of rank at most K
if it can be written as a sum of K rank 1 functions. While most functions are math-
ematically of infinite rank, smooth functions can often be approximated to machine
precision with a rank K truncation, i.e.,

f̃(θ, ρ) ≈
K∑
j=1

cj(ρ)rj(θ), (3.1)

for some relatively small K [41]. Below, we develop an efficient procedure for con-
structing rank K approximants of BMC-II functions that preserve BMC-II structure.

3.1. Iterative Gaussian elimination on functions. Given a matrix A of
rank n, K < n steps of Gaussian elimination (GE) with complete or rook pivoting
can often be used to construct a near-best rank K approximation to A, provided that
the singular values of A decay to zero sufficiently fast [14]. Methods related to GE,
such as adaptive cross approximation [2], two-sided interpolative decomposition [17],
and Geddes–Newton approximation [8] can be used to find low rank approximations
to multivariate functions. In [41], such approximations are constructed using an
adaptive, iterative variant of GE with complete pivoting, and we will extend this idea
to the approximation of functions in polar geometries.

Given the function f̃ , denote the maximum absolute value of f̃ for (θ, ρ) ∈
[−π, π] × [−1, 1] by f̃(θ∗, ρ∗). This value serves as a pivot. A GE step with com-
plete pivoting proceeds by forming a rank 1 function from this pivot and subtracting
it from f̃ :

f̃(θ, ρ) ←− f̃(θ, ρ)− f̃(θ∗, ρ)f̃(θ, ρ∗)

f̃(θ∗, ρ∗)︸ ︷︷ ︸
A rank 1 approx. to f̃

. (3.2)

In this scheme, functions of the form f̃(θ∗, ρ) are referred to as “column slices” of
f̃ . Similarly, functions of the form f̃(θ, ρ∗) are “row slices”. The step in (3.2) zeros
out the row and column slices containing the pivot. Since f̃ may be of infinite rank,
the GE procedure is terminated after the absolute maximum of the residual falls
below some specified relative tolerance, such as the product of machine epsilon and
the (approximate) maximum value of the function. The number of steps required to
achieve this is an upper bound on the numerical rank of f̃ , which is the minimum
rank required to approximate f̃ to machine precision using any bounded function of
finite rank [38].
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(θ∗, ρ∗)(θ∗−π, ρ∗)

(θ∗,−ρ∗)(θ∗−π,−ρ∗)

Fig. 2. A 2× 2 pivot (black circles) and corresponding column and row slices (blue lines) used
in a GE step on f̃ to preserve the BMC structure of a function.

Applying the GE procedure to f̃ for K steps, a rank K approximation is con-
structed:

f̃(θ, ρ) ≈
K∑
j=1

djcj(ρ)rj(θ). (3.3)

Here, dj is a coefficient related to the GE pivots, and cj(ρ) and rj(θ) are the jth
column slice and row slice, respectively, constructed during the GE procedure.

Unfortunately, this GE procedure does not preserve BMC-II symmetry and there-
fore destroys the association between f̃ and a continuous function on the disk. In [43],
a variation of GE that preserves symmetry is described for BMC functions related
to the sphere. Crucially, this method only depends on the BMC structure of the
function, and not on any additional features related to spherical geometries per se.
With some modifications, as we now describe, this procedure also applies to BMC-II
functions associated with the disk.

3.2. Structure-preserving Gaussian elimination. The structure-preserving
GE algorithm presented in [43] performs a GE step similar to (3.2), but with the
scalar pivot replaced with the following 2× 2 pivot matrix :

M =

[
f̃(θ∗ − π, ρ∗) f̃(θ∗, ρ∗)
f̃(θ∗ − π,−ρ∗) f̃(θ∗,−ρ∗)

]
, (3.4)

where (θ∗, ρ∗) ∈ [0, π] × [0, 1] are fixed values selected by the pivoting strategy de-
scribed in Figure 3. To understand why this is an appropriate choice, note that BMC
symmetry is entirely characterized by the following two equalities: f̃(θ∗ − π, ρ) =
f̃(θ∗,−ρ), ρ ∈ [−1, 1], and f̃(θ, ρ∗) = f̃(θ − π,−ρ∗), θ ∈ [−π, π]. Figure 2 shows
that the location of the entries of M correspond to the intersections of these row and
column slices. Letting f̃(θ∗−π, ρ∗) = a and f̃(θ∗, ρ∗) = b, (3.4) can be written as the
centrosymmetric matrix

M =

[
a b
b a

]
. (3.5)
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Assuming M−1 exists, a GE step with the pivot matrix M is given by

f̃(θ, ρ) ←− f̃(θ, ρ)−
[
f̃(θ∗ − π, ρ) f̃(θ∗, ρ)

]
M−1

[
f̃(θ, ρ∗)

f̃(θ,−ρ∗)

]
︸ ︷︷ ︸

= s̃(θ, ρ)

. (3.6)

We now show that the GE step in (3.6) preserves BMC symmetry of f̃ .
Lemma 3.1. Given a BMC function f̃ , the update s̃ in (3.6) is also a BMC

function. That is, the GE step in (3.6) preserves BMC-symmetry.
Proof. To show that s̃(θ, ρ) has BMC structure, we employ quasimatrices.2

Let J denote the 2 × 2 exchange matrix, so that for a matrix A ∈ C2×n, JA
reverses the rows of A. Let J be the reflection operator, J : s̃(θ, ρ)→ s̃(θ,−ρ). Now
we use blocks of quasimatrices to rewrite s̃. Writing f̃ in terms of the functions g and h

given in (2.4), we have M =

[
g(θ∗, ρ∗) h(θ∗, ρ∗)
h(θ∗, ρ∗) g(θ∗, ρ∗)

]
. Let Q be the [0, π]×2 quasimatrix

defined as Q =
[
g(θ∗, ρ) | h(θ∗, ρ)

]
, and let P be the [0, 1]× 2 quasimatrix defined

as P =
[
g(θ, ρ∗) | h(θ, ρ∗)

]
. Then, s̃ in (3.6) can be written as

s̃ =

[
Q

J (QJ)

]
M−1

[
PT JPT

]
. (3.7)

Since M−1 is centrosymmetric, it commutes with J . Using this fact, (3.7) becomes

s̃ =

[
QM−1PT QM−1JPT

J (QM−1JPT ) J (QM−1PT )

]
, (3.8)

which, by the definition of J , is a BMC function.
Lemma 3.1 demonstrates that (3.6) provides a structure-preserving GE procedure

for BMC functions that can be used to construct a low rank approximation to f̃ as
in (3.3).3 However, this relies on the fact that M is invertible, which may not always
be the case. For example, M is singular for any BMC function that is π–periodic in
θ. For this reason, we must replace M−1 in (3.6) with M†ε , the ε-pseudoinverse of

M [16, Sec. 5.5.2]. The matrix M†ε is associated with the singular values of M and
a parameter ε > 0. We will discuss the choice of ε in Section 3.3, and an explicit
formula for M†ε is given in [43]. Using M†ε , the amended GE step is expressed by

f̃(θ, ρ) ←− f̃(θ, ρ)−
[
f̃(θ∗ − π, ρ) f̃(θ∗, ρ)

]
M†ε

[
f̃(θ, ρ∗)

f̃(θ,−ρ∗)

]
. (3.9)

Lemma 3.1 also holds for (3.9) because, like M−1, M†ε is centrosymmetric.
The strategy used to select each pivot matrix is important, as it relates to the

efficiency and convergence of the GE procedure. The 2 × 2 analogue of complete
pivoting proceeds by choosing (θ∗, ρ∗) ∈ [0, π] × [0, 1] such that σ1(M) is maximized
over all M , where σ1(M) is the larger of the two singular values of M . Given the
simple form of M in (3.5), it is easy to see that σ1(M) = max{|a + b|, |a − b|}. In

2
A quasimatrix A of size [a, b]× n is a matrix with n columns, where each column is a function

defined on the interval [a, b] [42].
3
The function s̃ in (3.6) is rank 2 and can be split into two rank 1 BMC functions (see Section 3.3).
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Algorithm: Structure-preserving GE on BMC functions

Input: A BMC function f̃ and a coupling parameter 0 ≤ α ≤ 1.

Output: A structure-preserving low rank approximation f̃k to f̃ .

Set f̃0 = 0 and ẽ0 = f̃ .

for k = 1, 2, 3, . . . ,

Find (θk, ρk) such that M =

[
a b
b a

]
, where a = ẽk−1(θk−1 − π, ρk−1) and

b = ẽk−1(θk−1, ρk−1) has maximal σ1(M).

Set ε = ασ1(M).

ẽk = ẽk−1 −
[
ẽk−1(θk − π, ρ) ẽk−1(θk, ρ)

]
M†ε

[
ẽk−1(θ, ρk)

ẽk−1(θ,−ρk)

]
.

f̃k = f̃k−1 −
[
ẽk−1(θk − π, ρ) ẽk−1(θk, ρ)

]
M†ε

[
ẽk−1(θ, ρk)

ẽk−1(θ,−ρk)

]
.

end

Fig. 3. A continuous idealization of our structure-preserving GE procedure on BMC functions.
In practice we use a discretization of this procedure and terminate it after a finite number of steps.

practice, it is much more efficient to choose (θ∗, ρ∗) from a coarse, discrete grid on
[−π, π]× [0, 1]. This results in a large, but not necessarily maximal, value of σ1(M).
Fortunately, GE is robust to these kinds of compromises, as a detailed analysis in [40]
shows.

The above GE procedure preserves general BMC structure, but it does not pre-
serve BMC-II structure: Nothing in (3.9) enforces that each constructed rank 1 func-
tion in (3.3) is constant along the line f̃(θ, 0). However, in the case where f̃(θ, 0) = 0,
each term in (3.3) constructed through (3.9) will possess BMC-II structure. This
suggests a strategy for the case where f̃(θ, 0) 6= 0. Since f̃(θ, 0) is constant by Defi-
nition 2.1, we deliberately choose the first GE step to zero out f̃(θ, 0) by subtracting
off a rank 1 term that is constant in the θ direction:

f̃(θ, ρ) ←− f̃(θ, ρ)− f̃(θ∗, ρ). (3.10)

Since the update to f̃ is zero along f̃(θ, 0) after this modification, each additional
rank 1 term constructed through continued applications of (3.9) possesses BMC-II
structure.

A continuous idealization of the BMC-preserving GE process is shown in Figure 3.
In practice, the algorithm implemented in Diskfun proceeds in two phases; this process
is identical to the method described in [41], except with 2×2 pivots. The result is a low
rank approximation to f̃ of the form (3.3). We represent each of the rj(θ) and cj(ρ)
functions in (3.3) using Fourier and Chebyshev interpolants, respectively. This process
is achieved in O(K3 +K2(m+ n)) operations [41], where K is the numerical rank of
the function, and m and n are the maximum Chebyshev and Fourier coefficients
required to resolve the functions cj(ρ) and rj(θ), respectively, to machine precision.

The example in Figure 4 illustrates the form of the final approximant. Each cj(ρ)
defines a radial “slice” of the function, and each rj(θ) defines a circular “slice”. To

form these slices, the GE algorithm adaptively samples f̃ along a sparse collection of
lines referred to as the skeleton, and constructs a rank K approximant of the form
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Fig. 4. Left: The function f(θ, ρ) = − cos((sin(πρ) cos(θ) + sin(2πρ) sin(θ))/4)
on the unit disk, constructed with the diskfun command f = diskfun(@(t,r)
-cos((sin(pi*r).*cos(t)+sin(2*pi*r).*sin(t))/4),’polar’) and plotted with the
command plot(f). Right: The skeleton used to approximate f , plotted with the command
plot(f,’.-’). The blue dots are the pivot locations taken by GE. The GE procedure samples f
at m Chebyshev points along each blue line, and n equispaced points along each blue circle, where
m and n correspond to number of Chebyshev coefficients and Fourier modes, respectively, in (3.3).
The underlying tensor product grid (in gray) shows the sample points required to approximate f to
machine precision without the GE procedure applied to the DFS method. The overresolution of the
tensor grid over the low rank skeleton can be seen.

of (3.3). In this process, only K2 +K(m+ n) samples are required to approximate f̃
to machine precision, as opposed to the mn samples required for the tensor product.
As depicted in Figure 4, the use of low rank methods effectively counters the over-
resolution issues associated with applying Chebyshev–Fourier tensor product grids on
the disk.

3.3. A parity-based interpretation of structure-preserving GE. For an
approximation to a function f on the disk to be continuous and differentiable at ρ = 0,
the following properties must hold for the Fourier expansion of f given in (2.2):

(i) k is even =⇒ φk(ρ) is an even function,
(ii) k is odd =⇒ φk(ρ) is an odd function,
(iii) k 6= 0 =⇒ φk(0) = 0.

In this section we show that these parity properties can be naturally recovered for the
BMC-II function f̃ , and are preserved by the GE procedure depicted in Figure 3.

Let f̃ be a BMC function defined via functions g and h in (2.4). Let f+ = g + h
and f – = g − h. Then, f̃ can be written as a sum of two BMC functions [43, Section
3.2]:

f̃ =
1

2

[
f+ f+

flip(f+) flip(f+)

]
︸ ︷︷ ︸

= f̃+

+
1

2

[
f – −f –

−flip(f –) flip(f –)

]
︸ ︷︷ ︸

= f̃ –

, (3.11)

i.e., f̃ = 1
2 (f̃+ + f̃ –). From (3.11), we can deduce that f̃+ is an even function in ρ and

π-periodic in θ, whereas f̃ – is an odd function in ρ and π-antiperiodic in θ. This is
equivalent to the statement of parity properties (i) and (ii), as π-periodic functions
have only even Fourier modes and π-antiperiodic functions have only odd Fourier
modes. While many techniques enforce these parity-based restrictions on the Fourier
and Chebyshev coefficients of functions on the disk, relating these properties more
generally to BMC-II functions allows one to apply these restrictions directly through
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the values of a function, without ever using the coefficients. This is the premise our
GE procedure operates on.

As shown in Section 3.2 of [43], we can write the GE step (3.9) as

f̃(θ, ρ) ←− 1

2
(f̃+(θ, ρ)−m+f̃+(θ∗, ρ)f̃+(θ, ρ∗)) +

1

2
(f̃ –(θ, ρ)−m–f̃ –(θ∗, ρ)f̃ –(θ, ρ∗)),

(3.12)

where m+ and m– are values4 derived from the spectral decomposition of M†ε , and
are given by

(m+,m–) =


(1/(a+ b), 0), if |a− b| < α|a+ b|,
(0, 1/(a− b)), if |a+ b| < α|a− b|,
(1/(a+ b), 1/(a− b)), otherwise.

(3.13)

Here, 0 < α < 1 is referred as the coupling parameter for the GE procedure, and α
determines ε in M†ε : α = ε/σ1(M) = ε/max{|a + b|, |a − b|}. The decomposition
in (3.12) reveals an alternative interpretation of structure-preserving GE as a coupled
process involving two standard GE procedures. If either of the first two cases of (3.13)
is chosen, GE with complete pivoting is performed on only one term in (3.12), resulting

in a rank 1 update. In the third case of (3.13), M†ε = M−1, and a rank 2 update
is achieved. It is desirable to perform as many rank 2 updates as possible, as this
reduces the overall number of pivot searches required by the GE procedure. Too small
a value of α may allow the use of M−1 when it is ill–conditioned, but choosing α too
close to 1 hampers the efficiency of the procedure. We have experimented with several
values for α and find that α = 1/100 works well in practice. The role of α in the
convergence rate of the GE procedure is discussed further in Section 3.4.

Following [43], we can exploit (3.12) to write the low rank approximation to f̃ as

f̃(θ, ρ) ≈
K∑
j=1

djcj(ρ)rj(θ) =

K
+∑

j=1

d+

j c
+

j (ρ)r+

j (θ) +

K
–∑

j=1

d–

jc
–

j(ρ)r–

j(θ), (3.14)

where K+ + K– = K. Here, the functions c+j (ρ) and r+

j (θ) for 1 ≤ j ≤ K+ are even
and π-periodic, respectively, while c–j(ρ) and r–

j(θ) for 1 ≤ j ≤ K– are odd and π-
antiperiodic, respectively. The pivots, d+ and d–, are related to the 2×2 pivot matrix
given in (3.4) [43]. If f is non-zero at the origin, the first step of the GE procedure
is given by (3.10). This chooses c+1 (ρ) = f̃(θ∗, ρ), r+

1 (θ) = 1, and d+

1 = 1, so that for
j > 1, cj(0) = 0. Crucially, this ensures that parity property (iii) is preserved in the
decomposition.

Using (3.14), the parity properties of f̃ are given explicitly, and this can be used
to simplify algorithmic procedures. An example is given in Section 4.3 on integration.
This expression also clarifies why our approximants are stable for differentiation (see
Section 4.4).

3.4. Convergence. In [43], it is shown that BMC structure-preserving GE ex-
actly recovers BMC functions of finite rank. In this section, we prove that for certain
analytic functions of infinite rank, structure-preserving GE converges at a geometric
rate. Specifically, we will consider a function f̃ that is analytically continuable in at
least one variable to a sufficiently large region of the complex plane.We characterize
this region formally using the concept of a stadium.

4
Note that m

+
and m

–
are not related to m in (2.3).

11



Definition 3.2 (Stadium). The stadium Sβ with radius β > 0 is the region in
the complex plane consisting of all numbers lying at a distance ≤ β from an interval
[c, d], i.e.,

Sβ =

{
z ∈ C : inf

x∈[c,d]
|x− z| ≤ β

}
.

To understand convergence, we will view structure-preserving GE as a coupled pro-

cedure involving the functions f̃+ and f̃ – defined in Section 3.3. The proof requires
an examination of the error produced after applying the GE step (3.12), and we see
in (3.13) that there are three cases to consider. Bounds on the error are intimately
tied to the growth factors of the GE procedures that are applied to f̃+ and f̃ –. The
growth factors quantify the worst possible increase in the absolute maximum of the
function after a rank one update. Geometric convergence can be proven if the size of
the stadium in which f̃ is analytic is large enough to counteract the potential growth
induced by GE.

The connection between the region of analyticity and the GE growth factor is
made clear in the proof of Theorem 8.1 in [42], which shows that iterative GE with
complete pivoting as in (3.2) converges geometrically for functions that are analytic
within a sufficiently large stadium. In the first or second case of (3.13), standard GE
with complete pivoting is applied to either f̃+ or f̃ –, and we may use Theorem 8.1
directly. In the third case of (3.13), two GE procedures are performed: a GE step
with complete pivoting is applied to whichever of the two functions f̃+ or f̃ – has a
larger absolute maximum value, and a GE step with a nonstandard pivoting strategy
is applied to the other function. If a bound on the growth factor of this nonstandard
GE step is known, then as long as f̃ is assumed to be analytic in an appropriately-
sized region of the complex plane, we can apply a mild generalization of Theorem 8.1.
For this reason, we precede the main convergence result with the following lemma:

Lemma 3.3. The growth factor for the nonstandard GE procedure applied within
BMC structure-preserving GE is bounded above by 1 + α−1, where α is the coupling
parameter in (3.13).

Proof. Consider performing one step of BMC structure-preserving GE on f̃ by
operating on f̃+ and f̃ – from (3.11), and suppose we are in the third case of (3.13).
Without loss of generality, suppose that |m–| > |m+|. Then, |m+| = 1/σ1(M), |m–| =
1/σ2(M), and a nonstandard GE step is performed on f̃ – using the pivot m–. Here,
σk(M) denotes the kth singular value of M .

After the nonstandard GE step is applied, the supremum norm of the residual is

‖ẽ–1‖∞ =

∥∥∥∥∥f̃ – − sgn(m–)
f̃ –(θ∗, ·)f̃ –(·, ρ∗)

σ2(M)

∥∥∥∥∥
∞
≤ ‖f̃ –‖∞ +

‖f̃ –‖2∞
σ2(M)

, (3.15)

where (θ∗, ρ∗) ∈ [−π, π]× [0, 1] is the location of the pivot in the first quadrant.
Since we are in the third case of (3.13), we have σ2(M) ≥ ασ1(M), and therefore

σ2(M) ≥ α‖f̃ –‖∞. Applying these results to (3.15) gives that

‖ẽ−1 ‖∞ ≤ (1 + α−1)‖f̃ –‖∞, (3.16)

i.e., the growth factor for the nonstandard GE step cannot exceed 1 + α−1.
Since bounds on the growth factors are known for each GE procedure applied on

f̃+ and f̃ –, geometric convergence of BMC structure-preserving GE can be proven.
An analogous theorem holds with the roles of θ and ρ exchanged.
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Theorem 3.4. Let f̃ : [−π, π]× [−1, 1]→ R be a BMC function such that f̃(θ, ·)
is continuous for any θ ∈ [−π, π] and f̃(·, ρ) is analytic and uniformly bounded in a
stadium Sβ of radius β = max(2, 1 + α−1)2πκ, κ > 1, for any ρ ∈ [−1, 1]. Then,
there exists a constant C > 0 such that

‖f̃ − f̃k‖∞ = ‖ẽk‖∞ ≤ Cµ−k,

where µ = min{κ, α−1}, α is the coupling parameter described in (3.13), and f̃k is the
approximant constructed after k steps of the BMC structure-preserving GE procedure.

Proof. For k ≥ 0, ẽk is a BMC function and can be written as the sum of an
even π-periodic and odd π-antiperiodic function, i.e., ẽk = ẽ+k + ẽ–k (see Section 3.3).
Let µ = min{κ, α−1}, and choose a constant C > 0 so that ‖ẽ+0 ‖∞ ≤ C/2 and

‖ẽ−0 ‖∞ ≤ C/2. We will show by induction that ‖ek‖∞ ≤ Cµ−k for all k > 0.
When k = 0, max{‖ẽ+0 ‖∞, ‖ẽ–0‖∞} ≤ (C/2). Suppose that for k > 0, the following

induction hypothesis holds:

max{‖ẽ+k‖∞, ‖ẽ–k‖∞} ≤ (C/2)µ−k. (3.17)

Consider the next structure-preserving GE step. Using (3.13), there are three cases
to consider.

Case 1: Here, ‖ẽ–k‖∞ < α‖ẽ+k‖∞, and only ẽ+k is updated (see Section 3.3). This
step is equivalent to performing a standard GE step with complete pivoting as in (3.2)
on ẽ+k . By Theorem 8.1 in [42], we have

‖ẽ+k+1‖∞ ≤ κ−1‖ẽ+k‖∞.

Since ẽ–k+1 = ẽ–k, we find that

‖ẽ–k+1‖∞ = ‖ẽ–k‖∞ < α‖ẽ+k‖∞,

and using the definition of µ and (3.17), we conclude that

max{‖ẽ+k+1‖∞, ‖ẽ−k+1‖∞} ≤ µ−1 max{‖ẽ+k‖∞, ‖ẽ–k‖∞} ≤ (C/2)µ−(k+1). (3.18)

Case 2: Here, ‖ẽ+k‖∞ < α‖ẽ–k‖∞, and only ẽ–k is updated. This is equivalent to
Case 1 with the roles of ẽ+k and ẽ–k interchanged.

Case 3: Without loss of generality, suppose that |m–| > |m+|. Then, a standard
GE step with complete pivoting is applied to ẽ+k , and a GE step with nonstandard
pivoting is performed on ẽ–k. As in Case 1, we find that

‖ẽ+k+1‖∞ ≤ κ−1‖ẽ+k‖∞.

For ẽ–k+1 we use the bound on the growth factor from Lemma 3.3 to apply a slight
generalization of Theorem 8.1 in [42], finding that

‖ẽ–k+1‖∞ ≤ κ−1‖ẽ–k‖∞.

It follows from the definition of µ and (3.17) that

max{‖ẽ+k+1‖∞, ‖ẽ–k+1‖∞} ≤ (C/2)µ−(k+1).

13



0 20 40 60 80 100
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

φ1

G
E

SVD

Rank of approximant

L
2

er
ro

r

0 20 40 60 80 100
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

φ2

GE

SVD

Rank of approximant

L
2

er
ro

r

Fig. 5. A comparison of low rank approximations to the functions in (3.20) computed using the
SVD and the iterative GE procedure. The L2 error is plotted against the rank of the approximants
to φ1 and φ2. The L2 error given by the SVD approximants are optimal and we observe that that
the low rank approximants constructed by the GE procedure are near-optimal.

By induction, we have that

max{‖ẽ+k‖∞, ‖ẽ–k‖∞} ≤ (C/2)µ−k, k ≥ 0,

and the result follows from the fact that ‖ẽk‖∞ ≤ ‖ẽ+k‖∞ + ‖ẽ–k‖∞.

The assumptions required on f̃ in Theorem 3.4 are rather restrictive, as the proof
of convergence requires us to consider GE growth rates that account for the worst-case
scenario. Empirically, we observe convergence for a much broader class of functions,
and at rates that are asymptotically optimal. This is described in the next section.

3.5. Near-optimality. While Section 3.4 proves that convergence of the GE
procedure in Figure 3 is geometric when f is analytic in a sufficiently large region
of the complex plane, we observe in practice that the procedure converges at near-
optimal rates for functions that are only a few times differentiable.

If f̃ is Lipschitz continuous with respect to both variables for (θ, ρ) ∈ [−π, π] ×
[−1, 1], then the best rank K approximation to f̃ is given by the Karhunen-Loève
expansion, also called the the singular value decomposition (SVD), of f̃ :

f̃(θ, ρ) =

∞∑
j=1

σjuj(ρ)vj(θ), (θ, ρ) ∈ [−π, π]× [−1, 1]. (3.19)

The non-increasing sequence σ1 ≥ σ2 ≥ · · · of real, nonnegative numbers are the
singular values of f̃ . The continuous singular functions {uj(ρ)} and {vj(θ)} each
form an orthonormal set of functions with respect to the standard L2 inner product.
A best rank K approximation to f̃ , in the sense of the L2 norm, is constructed by
truncating (3.19) after K terms [34].

For reasons closely related to those discussed in Section 3.3, the SVD preserves the
BMC structure of f̃ [49]. Unfortunately, the high cost of computing the SVD makes
this an untenable approach for constructing low rank approximants to f̃ in practice.
Nonetheless, approximants constructed via the SVD are optimal with respect to ‖·‖2,
and this provides a way to check the quality of the low rank approximants constructed
by our GE procedure. Figure 5 displays the L2 error over [−π, π] × [−1, 1] for rank
K approximations constructed via the SVD and the GE procedure for the following
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two BMC-II functions:

φ1(θ, ρ) = exp
[
−(cos(11ρ sin θ) + sin(ρ cos θ))2

]
,

φ2(θ, ρ) = (1− ω)6+

(
35(ω)2 + 18ω + 3

)
,

(3.20)

where ω(θ, ρ) =
(

(ρ cos θ − .2)2 + (ρ sin θ − .2)2
)1/2

and ζ+ = max{ζ, 0}. The error

given by the SVD behaves in accordance with known theoretical results, decaying
geometrically for the function φ1 and at an algebraic rate for φ2 [38]. In experiments,
it is observed that our GE procedure constructs near-best low rank approximants to
smooth BMC functions.

4. Algorithms for numerical computation with functions on the disk. In
this section, we describe several of the algorithms used in the Diskfun software. These
methods rely on the fact that every smooth function f on the disk is associated with a
BMC-II function f̃ that is periodic in θ. We compute with a low rank approximation
to f̃ as in (3.3), which is constructed by the GE procedure in Figure 3. We rely on
the fact that in (3.3), each cj(ρ) and rj(θ) can be approximated by a Chebyshev and
Fourier series, respectively, so that for 1 ≤ j ≤ K,

cj(ρ) ≈
m−1∑
`=0

aj` T`(ρ), rj(θ) ≈
n/2−1∑
k=−n/2

bjk e
ikθ, (4.1)

where T`(ρ) is the Chebyshev polynomial of degree `, and n is an even integer.
The algorithms for computing with functions represented in Chebyshev and Fourier

bases differ considerably from one another. However, implementation in the Cheb-
fun environment is significantly simplified due to its underlying object-oriented class
structure. For example, Chebfun overloads commands such as sum(g) (integration)
or diff(g) (differentiation), so that the same syntax executes different underlying
algorithms based on whether the object g is represented by a Chebyshev series or a
Fourier series [50].

4.1. Pointwise evaluation. To efficiently evaluate f̃ at a fixed point (θ∗, ρ∗),
we use (3.3), observing that

f̃(θ∗, ρ∗) ≈
K∑
j=1

djcj(ρ∗)rj(θ∗). (4.2)

Evaluation of f̃ proceeds as 2K 1D function evaluations. Functions cj(ρ), 1 ≤ j ≤ K,
are evaluated using Clenshaw’s algorithm [46, Ch. 19], and functions rj(θ), 1 ≤ j ≤ K,
are evaluated using Horner’s scheme [50]. Altogether, this requires O(K(m + n))
operations. The algorithm is implemented in the feval command.

4.2. Computation of Chebyshev–Fourier coefficients. The low rank form
of f̃ facilitates the use of fast transform methods based on the FFT. We can write
the truncated tensor product Chebyshev–Fourier expansion of f̃ as follows:

f̃(θ, ρ) ≈
n/2−1∑
k=−n/2

m−1∑
`=0

X`kT`(ρ)eikθ, (4.3)
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where X is a matrix whose entries are the 2D Chebyshev–Fourier coefficients of f̃ .
Using the low rank form of f̃ given by (3.3), the matrix X can also be expressed in low
rank form as X = ADBT . Here, A is an m×K matrix whose jth column contains the
coefficients {aj`} from (4.1), D is a K-by-K diagonal matrix consisting of the pivot
values {dj}, and B is an n × K matrix whose jth column contains the coefficients

{bjk} from (4.1). Given a sample of f̃ on an m × n Chebyshev–Fourier grid, the

direct computation of the Chebyshev–Fourier coefficients of f̃ costs O(mn log(mn))
operations. However, using the GE procedure in Section 3.2, the low rank form of X
can be found in only O(K3 +K2(m+ n) +K(m logm+ n log n)) operations. This is
because once the GE process adaptively selects the skeleton representing f̃ at a cost
of O(K3 +K2(m+ n)), the coefficients in (4.1) for every cj(ρ) and rj(θ) in (3.3) can
be found in only O(K(m logm+ n log n)) operations.

Several procedures, such as integration and differentiation, can be executed using
the low rank factorization of X. Using the command coeffs2 in Diskfun, X can be
explicitly computed with an additional O(Kmn) operations.

The above operation retrieves coefficients when supplied with a sample of f̃ ,
and the inverse of this operation provides an efficient way to sample f̃ on a m × n
Chebyshev–Fourier grid. Given X in low rank form, this proceeds in O(K(m logm+
n log n)) operations; the algorithm is implemented in the sample command.

4.3. Integration. To integrate f̃(θ, ρ) over the unit disk, we again take advan-
tage of the low rank form of (3.3), transforming the double integral into sums of 1D
integrals:

∫ π

−π

∫ 1

0

f̃(θ, ρ)ρ dρ dθ ≈
K∑
j=1

dj

∫ π

−π
rj(θ) dθ

∫ 1

0

cj(ρ)ρ dρ. (4.4)

For integration of the periodic rj(θ) functions, the trapezoidal rule is used. To eval-
uate

∫ 1

0
cj(ρ)ρ dρ, the coefficients for ρcj(ρ) are computed, and then Clenshaw-Curtis

quadrature is applied [46, Ch. 19]. These 2K 1D integrals can be computed in a total
of O(Km) operations. This can be further reduced using (3.11) since only the even,
π-periodic terms will contribute to the value of the integral.

Integration is implemented in the sum2 command. For example, the integral of
f(x, y) = −x2 − 3xy − (y − 1)2 over the unit disk is −3π/2, and can be computed in
Diskfun as

f = diskfun(@(x,y) -x.ˆ2-3*x.*y -(y-1).ˆ2);
sum2(f)
ans =

-4.712388980384692
The error is determined with abs(sum2(f)+3*pi/2), which gives 1.7764× 10−15.

4.4. Differentiation. When considering derivatives on the disk, note that par-
tial differentiation with respect to ρ can lead to artificial singularities at ρ = 0. For
example, if f(θ, ρ) = ρ2, then ∂f/∂ρ = 2ρ , which is not smooth on the disk. In con-
trast, for a smooth function f̃ , partial derivatives with respect to x and y will always
be well-defined. For this reason, and because of the usefulness of these operators in
vector calculus (see Section 4.6), we consider efficient and stable ways to calculate
∂f̃/∂x and ∂f̃/∂y.

By (2.1), ρ =

√
x2 + y2, and θ = tan−1(y/x), so the chain rule can be applied to
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obtain

∂f̃

∂x
= cos θ

∂f̃

∂ρ
− 1

ρ
sin θ

∂f̃

∂θ
, (4.5)

∂f̃

∂y
= sin θ

∂f̃

∂ρ
+

1

ρ
cos θ

∂f̃

∂θ
. (4.6)

Exploiting the low rank form given in (3.3), (4.5) can be written as

∂f̃

∂x
≈

K∑
j=1

dj

(
∂cj(ρ)

∂ρ

)(
cos θ rj(θ)

)
−

K∑
j=1

dj

(
cj(ρ)

ρ

)(
sin θ

∂rj(θ)

∂θ

)
. (4.7)

A similar expression can be used for (4.6).
Here we make an important observation. The above result establishes that ap-

proximants on the disk are continuously differentiable at ρ = 0 only if
∑K
j=1 cj(ρ) is

divisible by ρ. Suppose f̃ is nonzero at ρ = 0 and write the approximant in the form
given by (3.14). Then, because of (3.10), for 2 ≤ j ≤ K+, each term d+

j c
+

j (ρ)r+

j (θ) is
zero at ρ = 0. Since c+j (ρ) is an even Chebyshev polynomial, it must be of the form

α1ρ
2 + α2ρ

4 + · · ·+ αqρ
2q, where q ≤ b(m− 1)/2c. This implies that these functions

are all divisible by ρ. For j = 1, r+

1 (θ) is constant by (3.10), and so all terms in (4.7)
involving derivatives of r+

1 (θ) with respect to θ vanish. Since every c–j(ρ) function for

1 ≤ j ≤ K− is an odd function, these are also always divisible by ρ. This means that
the approximants constructed by the BMC-II structure preserving GE procedure have
inherited properties ensuring that they are continuously differentiable at ρ = 0.

There are 2K 1D derivatives to compute in (4.7). Using (4.1),

sin θ
∂rj(θ)

∂θ
=

n/2−1∑
k=−n/2

−(k + 1)bjk+1 + (k − 1)bjk−1
2

eikθ, (4.8)

cos θ rj(θ) =

n/2−1∑
k=−n/2

bjk+1 + bjk−1
2

eikθ, (4.9)

where b−n/2−1 and bn/2 are set to zero. Expanding each cj(ρ) as in (4.1), the recursion
formula in [27, p. 34] gives the coefficients for ∂cj(ρ)/∂ρ in O(m) operations. To
determine cj(ρ)/ρ, we construct the operator Bρ, which represents multiplication by
the function g(ρ) = ρ in the Chebyshev basis. Then,

cj(ρ)

ρ
=

m−1∑
`=0

(B−1ρ aj)`T`(ρ), Bρ =



0 1
2

1 0 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1
2 0 1

2
1
2 0


, (4.10)

where aj = (aj0, . . . , a
j
m−1)T . Here, B−1ρ exists because we choose Bρ to be of size

m×m, where m is an even integer. Working directly with the coefficients via (4.10)
is an efficient way to bypass the artificial singularity introduced in (4.7), without
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explicitly avoiding computation at ρ = 0. In contrast, the standard procedure when
working on function values with the DFS method uses a ”shifted grid” strategy [12,18].

Differentiation is accessed through the diff command in Diskfun, and requires
O(K(m+ n)) operations.

4.5. The L2 norm and the weighted singular value decomposition. In
Diskfun, norm(f) is overloaded to compute the L2 norm on the disk, which is the
continuous analogue of the matrix Frobenius norm [42]. This is one of the very few
instances in Diskfun where it makes more sense to work with f directly, rather than
f̃ . The L2 norm of a function f on the disk is given in polar coordinates as

‖f‖22 =

∫ π

−π

∫ 1

0

|f(θ, ρ)|2ρ dρ dθ. (4.11)

Computing ‖f‖2 using (4.11) directly is numerically unstable, especially when f is
near zero. A more stable formulation is given in [34]: If f is L2 integrable, then

‖f‖22 =

∞∑
j=1

σ2
j , (4.12)

where σ1 ≥ σ2 ≥ · · · ≥ 0 are real and nonnegative numbers referred to as the
(weighted) singular values of f . For this reason, we are interested in the weighted
SVD of f , which is given by

f(θ, ρ) =

∞∑
j=1

σjuj(ρ)vj(θ), (θ, ρ) ∈ [−π, π]× [0, 1]. (4.13)

The singular functions {uj(ρ)}, ρ ∈ [0, 1], and {vj(θ)}, θ ∈ [−π, π], are orthonormal
under the following inner products, respectively:

< u, s >ρ=

∫ 1

0

u(ρ)s(ρ)ρ dρ, < v,w >=

∫ π

−π
v(θ)w(θ) dθ, (4.14)

where the bars on s and w denote complex conjugation.
The weighted SVD for a function on the disk is determined by applying a general-

ization of QR factorization to quasimatrices. Restricting the low rank approximation
to f̃ given by (3.3) to (θ, ρ) ∈ [−π, π] × [0, 1], we form a [0, 1] × K quasimatrix C
such that the jth column of C is cj(ρ) in (3.3) restricted to the domain [0, 1]. Simi-
larly, we form the [−π, π]×K quasimatrix R such that the jth column of R is rj(θ).
A QR quasimatrix factorization with respect to the standard L2 inner product on
[−π, π]× [0, 1] is given in [45] and selects the Legendre polynomials to orthogonalize
against, and this procedure is applied to R. In consideration of (4.14), C is orthogo-
nalized against the functions

√
2

J1(ωk)
J0(ωkρ), k = 1, 2, . . . ,

where Jν is the Bessel function of order ν, and ωk is the kth positive root of J0(ρ).
This finds {uj(ρ)}, which are orthonormal with respect to (4.14). Once the QR factor-
izations for C and R are known, the SVD is determined through standard techniques,
as discussed in [42].
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Fig. 6. The vector function u = ∇× ψ+∇φ, with ψ and φ defined in (4.15), together with its
curl, ∇× u (left), and divergence, ∇ · u (right). The field was plotted using quiver(u), while the
curl and divergence were computed using curl(u) and div(u), respectively, and plotted using the
contour command.

In addition to providing a mathematically stable way to compute (4.11), the
weighted SVD gives the best rank K approximation to f with respect to the L2

inner product on the disk. Unfortunately, the use of the weighted SVD as a low-
rank approximation method is limited because the rank 1 terms in (4.13) may be
discontinuous at the origin of the disk [49], and consequently, the truncation of (4.13)
may not be smooth. The SVD is accessed in Diskfun through the svd command, and
is used internally in the norm command.

4.6. Vector-valued functions and vector calculus on the disk. Vector-
valued functions can also be constructed in Diskfun. These functions are represented
with respect to the Cartesian coordinate basis vectors î and ĵ, since not all smooth
vector fields defined over the disk have smooth components when represented with
respect to the polar coordinate basis vectors, r̂ and θ̂. For example, the vector field
given by f = 0̂i + ĵ is expressed as f = sin θr̂ + cos θθ̂ in polar coordinates, and both
of these components are discontinuous at the origin of the disk.

Vector-valued functions are accessed in Diskfun through the creation of diskfunv
objects. A diskfunv consists of two diskfun objects, one for each component of the
vector-valued function. Algorithms involving diskfunv objects are implemented for
algebraic actions, such as addition, as well as vector-based operations, such as the
dot/cross products, and divergence. Commands that map scalar-valued functions to
vector-valued functions and vice-versa, such as grad(f) and curl(f), are also
included. In the latter case, the standard interpretations are used, i.e., ∇ × f =
[fy,−fx] for a scalar function f , and ∇ × u = vx − uy when u = [v, u] is a vector-
valued function. As an example, consider the potential functions given by

ψ(x, y) = 10e−10(x+.3)
2−10(y+.5)2 + 10e−10(x+.3)

2−10(y−.5)2 + 15(1− x2 − y2),

φ(x, y) = 10e−10(x−.6)
2−40y2 ,

(4.15)

and the vector field u = ∇×ψ+∇φ. This field consists of the sum of a divergence-free
term, ∇× ψ, and a curl-free term, ∇φ. Once ψ and φ are constructed as diskfun ob-
jects, u can be constructed with a single line of code: u = curl(psi)+grad(phi).
Figure 6 displays a plot of u together with its curl and divergence.

4.7. Miscellaneous operations. Diskfun is included as an object class in Cheb-
fun, and so has access to many of the operations in Chebfun. Operations that do not
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strictly require symmetry properties related to the geometry of the disk are computed
using Chebfun2 with functions defined in polar coordinates [41]. This includes opti-
mization routines, such as min2, max2, and roots, as well as procedures inspired
by matrices such as trace and lu. Operations that use Chebfun2 are performed
automatically, without requiring adjustments or intervention by the user.

5. A fast Poisson solver for computing solutions in low rank form.
In [49] and [37], optimal complexity solvers for Poisson’s equation on the disk are for-
mulated through the use of parity properties associated with the Chebyshev–Fourier
coefficients of BMC-II functions. Unfortunately, these solvers cannot capitalize on the
low rank structure of the approximants in (3.3), and they do not guarantee that the
computed solution has good compression properties. Finding a low rank representa-
tion of the solution requires additional work, and such representations are essential
in Diskfun. This has motivated the development of a fast Poisson solver that directly
computes low rank approximations to solutions.

Our method uses the factored alternating direction implicit (ADI) method [4,23]
to work independently on the Chebyshev and Fourier coefficients in (4.1). We combine
ADI with the Fourier and ultraspherical spectral methods, so that every linear system
we solve is sparse and spectral accuracy is guaranteed [30]. We find that the ADI-
based method efficiently constructs low rank solutions whenever the numerical rank
of the forcing function is sufficiently low.

Given a function f(θ, ρ) on the unit disk, we seek the solution u(θ, ρ) to Poisson’s
equation, ∇2u = f , where (θ, ρ) ∈ [−π, π] × [0, 1]. To ensure a unique solution,
Dirichlet conditions are prescribed as u(θ, 1) = g(θ), where g is a 2π-periodic function.
In this section, we will assume that g(θ) = 0.5

To enforce that the numerical solution u is continuous over u(θ, 0), we apply the
disk analogue to the DFS method and consider solving the related equation ∇2ũ = f̃ ,
where f̃ is the BMC-II extension of f given by (2.4). The equation ∇2ũ = f̃ is
expressed in polar coordinates as

ρ2
∂2ũ

∂ρ2
+ ρ

∂ũ

∂ρ
+
∂2ũ

∂θ2
= ρ2f̃ , (θ, ρ) ∈ [−π, π]× [−1, 1], (5.1)

where the standard formulation is multiplied by ρ2 so that the variable coefficients are
low degree polynomials in ρ. It is straightforward to show that ũ must also possess
BMC-II symmetry and therefore corresponds to a differentiable function on the disk.
Restricting ũ to [−π, π]× [0, 1] gives u.

To ensure that ũ satisfies homogeneous boundary conditions, we will express it
as a product of 1− ρ2 and an unknown function û . Expanding û in the Chebyshev–
Fourier basis, we find that

ũ(θ, ρ) ≈ (1− ρ2)û(θ, ρ) = (1− ρ2)

n/2−1∑
k=−n/2

m−1∑
`=0

Y`kT`(ρ)eikθ, (5.2)

where n is an even integer.
We seek a low rank approximation to the Chebyshev–Fourier coefficient matrix

Y ∈ Cm×n. Since 1−ρ2 = (T0(ρ)−T2(ρ))/2, we can represent multiplication by 1−ρ2

5
Whenever g(θ) is nonzero, the system can be solved by relating it to a system with homogeneous

boundary conditions (see [6, Ch. 6]).
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in the Chebyshev basis with a sparse operator M . Then, MY is the Chebyshev–
Fourier coefficient matrix of ũ, i.e., MY = X in (4.3).

To use ADI, the discretization of (5.1) must be expressed as a Sylvester matrix
equation of the form AY − Y B = C, with the matrices A ∈ Cm×m and B ∈ Cn×n

represented in a data-sparse way. Plugging (5.2) into (5.1) and applying the chain
rule, we rewrite (5.1) with respect to û:

ρ2(1− ρ2)
∂2û

∂ρ2
+ (−5ρ3 + ρ)

∂û

∂ρ
− 4ρ2û︸ ︷︷ ︸

=L

+(1− ρ2)
∂2û

∂θ2
= ρ2f̃ . (5.3)

We now seek a discrete counterpart to the operator L that acts on the Chebyshev co-
efficients of û. To formulate such an operator, we apply a variant of the ultraspherical
spectral method [30]. This method uses recurrence relations between the Chebyshev
and other ultraspherical polynomials to define sparse differential operators. Apply-
ing the ultraspherical spectral method directly results in a discretization of L that is
sparse and banded. However, the bandwidth of this operator can be further reduced
if we use a recurrence relation between the Chebyshev polynomials of the first and
second kind that involves the term 1− ρ2. Using [29, (18.9.10)], we have that

(1− ρ2)
d2

dρ2
T`(ρ) = −`(`+ 1)

(
1

2
U`(ρ)− 1

2
U`−2(ρ)

)
+ `U`(ρ), ` ≥ 2, (5.4)

where {U`} are the Chebyshev polynomials of the first kind. We use (5.4) to define
a discrete operator D2(1) that represents (1 − ρ2)∂2/∂ρ2. Like all differentiation
operators in the the ultraspherical spectral method, D2(1) acts on coefficients in one
basis and converts them to another. Specifically, it acts on Chebyshev coefficients
and returns coefficients in the {U`} basis. The remaining terms in L are expressed
using standard techniques in the ultraspherical spectral method, and the resulting
discretization of L, denoted as L, is a banded matrix of bandwidth 4.

We will use L and the differentiation matrix

D2
F = diag

(
−(n2 )2,−(n−12 )2, · · · , 0,−1,−4, · · · ,−(n−12 )2

)
,

which discretizes ∂2/∂θ2 and acts on Fourier coefficients, to write the discretization
of (5.3) as a generalized Sylvester equation:

LY + S1MYD2
F = S1Mρ

2F. (5.5)

Recall that the matrix M is an operator representing multiplication by 1 − ρ2 .6

The tridiagonal matrix S1 converts coefficients in the Chebyshev basis to the {U`}
basis; this is required due to the action of L (see [30]). On the right-hand side, F is
the Chebyshev–Fourier matrix of coefficients for f̃ , and M

ρ
2 is a tridiagonal matrix

representing multiplication by ρ2.
To apply ADI, we must write (5.5) in the following form:

(S1M)−1L︸ ︷︷ ︸
=A

Y − Y (−D2
F2)︸ ︷︷ ︸

=B

= M−1M
ρ
2F︸ ︷︷ ︸

=C

(5.6)

6
Note that in the first term, multiplication by 1− ρ2 occurs implicitly via (5.3).
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The matrices L and S1M are each banded with a bandwidth of 4, and B is diagonal.
We solve (5.5) by applying the factored ADI method in [4]. This method never requires
F to be formed explicitly. Rather, it operates directly on the low rank factorization
of F described in Section 4.2. The solution is returned as a low rank factorization,
Y = ZDG∗, where Z is a collection of Chebyshev coefficients, D is diagonal, and G
is a collection of Fourier coefficients.

ADI is an iterative method, and the convergence of the method is sensitive to the
selection of a set of shift parameters [24, 33]. The spectrum of A in (5.6), denoted
as σ(A), can be contained in an interval on the real line that is well-separated from
the interval containing σ(B). In such a scenario, near-optimal shift parameters are
known and can efficiently be computed [33].

The computational cost of ADI is dependent on the numerical rank of the ma-
trix C and properties of the matrices A and B. If A and B were normal, one
could directly apply bounds given in [3, 24, 33] to find the maximum number of
ADI iterations required for approximating Y to within the tolerance ε.7 However,
A is not a normal matrix. Fortunately, the matrix V in the eigendecomposition
A = V ΛV −1 is well-conditioned, with κ2(V ) = ‖V ‖2‖V −1‖2 growing approximately
quadratically with m. We apply the bound for normal matrices given in [3] to the
eigendecomposition of A and find that we require at most N steps of ADI, where

N =
⌈
π−2 log(4κ2(V )/ε) log(4γ)

⌉
. Here, γ, described in Corollary 4.2 of [3], is a

function of σ(A) and σ(B). Empirically, we observe that γ grows approximately
quadratically as (m + n) increases. Each iteration of ADI requires 2K sparse, linear
solves, so the total cost for performing factorized ADI on (5.6) is O(NK(m+ n)).

The ADI method results in an overestimation of the numerical rank of Y . This is
remedied by applying a compression step on the factorization Y = ZDG∗ via the SVD,
at a computational cost of O((NK)2(m+ n) + (NK)3). Accounting for the logarith-
mic growth of N , the overall cost of our procedure is O(K2(n+m)(log(n) log(m))2 +
K3(log(n) log(m))3).

In contrast, optimal complexity methods that ignore the numerical rank of f̃
find a low rank approximation to Y in O(mn logmn + K̃3 + K̃2(m + n)), where K̃
is the numerical rank of Y . This is because one can decouple (5.6) and find the
coefficient matrix Y in O(mn) operations. A low rank approximation to Y can then
be constructed by retrieving the function values associated with Y via the FFT, and
then performing BMC structure-preserving GE.

The ADI-based method is beneficial when the numerical rank of Y is sufficiently
small, and in practice, we use the alternative solver described in [49] whenever ADI
is not advantageous. Figure 7 (left) compares the rate at which these two methods
construct a low rank approximation, represented as a diskfun object, to the solution
of (5.1). For choices of f̃ with various numerical ranks, we plot the wall clock time
in seconds against increasingly large values of n, with m = 2n + 1. The alternative
solver, which is insensitive to the rank of f̃ , is represented in black. The ADI-based
method proves effective for moderate-sized problems (n = 1048) when the rank of
f̃ is below 10, performing up to 5 times faster than the alternative method. With
n = 10,000 and f̃ of numerical rank 5, the ADI solver constructs a low rank solution

7
Bounds are also supplied in [3] and [33] for the case of non-normal A and B through the use of

pseudospectra and fields of values, respectively. In our case, the matrix V in the eigendecomposition

A = V ΛV
−1

is well-conditioned, and we therefore only require a slight generalization on the bounds
supplied for normal operators.
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Fig. 7. Left: Comparison of the execution (wall clock) time for the ADI-based Poisson solver
and an optimal complexity solver that does not account for low rank structures (black), as a function
of n, where the problem size is (2n+ 1)× n. Timings include the construction of a diskfun object.

Right: Solution to ∇2
u = f with boundary condition u(θ, 1) = 0, where f is given in (5.7).

in under 5 seconds.8

Our solver is implemented in Diskfun in an integrated way: The output returned
is automatically represented as a diskfun object, and can therefore immediately be
visualized or operated on using Diskfun commands. For example, Figure 7 (right)
displays the solution to ∇2u = f computed with the poisson command in Diskfun.
Here, f is numerically a rank 16 function, given by

f(θ, ρ) = e−40(ρ
2−1)4 sinh

(
5− 5ρ11 cos(11θ − 11/

√
2)
)
, (5.7)

and the boundary condition is u(θ, 1) = 0.

6. Conclusions. The analogue of the double Fourier sphere (DFS) method for
functions on the unit disk provides a useful structure that is retained through a new
iterative Gaussian elimination procedure on functions. We use this concept to con-
struct low rank approximations to functions on the disk that facilitate fast and stable
computations based on the FFT. Fast and spectrally accurate algorithms exploiting
low rank structures are described for several operations, including differentiation, inte-
gration, vector calculus, and the solving of Poisson’s equation. We have implemented
these ideas in Diskfun, which is part of the publicly available, open-source software
Chebfun. This allows investigators to compute with functions in polar geometries in
an intuitive, accurate, and highly efficient way, without concern for the underlying
discretization procedure.
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8
Timings were performed in MATLAB R2016a on a 2015 Macbook Pro with no explicit paral-

lelization. The degrees of freedom used in this experiment were increased artificially to demonstrate
asymptotic complexity.
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