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Abstract

In standard equispaced finite difference (FD) formulas, symmetries can make the or-
der of accuracy relatively high compared to the number of nodes in the FD stencil.
With scattered nodes, such symmetries are no longer available. Thus, the number of
nodes in the stencils can be relatively large compared to theresulting accuracy. The
generalization ofmehrstellenverfahren (compact) FD (CFD) formulas that we propose
for scattered nodes and radial basis functions (RBFs) achieves the goal of reducing
the number of stencil nodes without a similar reduction in accuracy. We analyze the
accuracy of these new compact RBF-FD formulas by applying them to some model
problems, and study the effects of the shape parameter that arises in, for example, the
multiquadric radial function.
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Introduction

An obvious approach for circumventing the geometric inflexibility of the standard fi-
nite difference method (FDM) for solving partial differential equations (PDEs) is to
allow the nodes of the FD stencils to be placed freely, so thata good discretization of
the physical domain of the problem can be obtained. However,this naturalmesh-free
idea raises questions of how the weights of the resultingscattered node FD formulas
should be computed. It has recently (and what appears to be independently) been pro-
posed by Shuet al. (2003), Tolstykhet al. (2003), Cecilet al. (2004), and the present
authors (2003) that RBF interpolants be used for computing these weights. We refer
to this idea as the RBF-FD method. The following are some reasons for using RBFs:
(1) for the appropriate choice of radial functionφ(r), the RBF interpolation method is
well-posed in all dimensions (unlike polynomial interpolation); (2) RBF interpolants
can be very accurate at approximating derivatives; and (3) Certain types of radial func-
tions φ(r) feature a “shape” parameterε that allows them to vary from being nearly
flat (ε → 0) to sharply peaked (ε → ∞). The recent work of, for example, Forn-
berget al. (2002) shows that all classical FD formulas can be recoveredby “flat” RBF
interpolants (when the nodes are arranged accordingly).

In standard equispaced finite difference (FD) formulas, symmetries can make the order
of accuracy relatively high compared to the number of nodes in the FD stencil. With
scattered nodes, such symmetries are no longer available. Thus, the number of nodes in



the stencils can be relatively large compared to the resulting accuracy. To circumvent
this problem, we propose a generalization of compact finite difference (CFD) formulas
first introduced by Collatz (1960). The basic idea behind this method is to keep the
stencil size fixed and to also include in the FD formula a linear combination of deriva-
tives ofu at surrounding nodes. In the case of 1-D and equispaced nodes, the weights
for these CFD formulas are typically derived using Padé approximants. For scattered
nodes in one and higher dimensions, and for RBFs, this Padé approach is no longer
available. Instead, we propose a method based on Hermite RBFinterpolation.

Without loss of generality, we limit the discussion to RBF-FD and RBF-CFD formulas
for thed-dimensional Laplacian∇2.

Hermite RBF interpolation

Since the RBF-CFD formulas are ultimately obtained from Hermite RBF interpolants,
we review in this section a method for solving the Hermite interpolation problem. We
note that the standard RBF-FD formulas are ultimately obtained from standard RBF
interpolants, which turn out to be a special case of Hermite RBF interpolants.

Let σ be a vector containing some combination ofm ≤ n distinct numbers from the set
{1, . . . , n}. Given a set of distinct data pointsxi ∈ R

d, i = 1, . . . , n, and corresponding
(scalar) data valuesu(xi), i = 1, . . . , n, and∇2u(xσi

), i = 1, . . . , m, the Hermite RBF
interpolation method we consider is to find an interpolant ofthe form

s(x) =
n∑

i=1

λiφ(‖x − xi‖) +
m∑

j=1

αj∇
2φ(‖x − xσj

‖) + β . (1)

Here φ(r) is someradial function and‖ · ‖ is the standard Euclidean norm. This
method is similar to the Hermite-Birkhoff method proposed by Wu (1992). Imposing
the Hermite interpolation constraints and the additional constraint

∑n

i=1
λi = 0 leads

to the following symmetric linear system of equations (in block form)
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u

∇2u

0


 . (2)

For the appropriate choice ofφ, A is guaranteed to be non-singular (Sun 1994). Note
that form = 0, the Hermite problem reduces to the standard RBF interpolation prob-
lem.

In this study, we focus on the multiquadric (MQ) radial function, φ(r) =
√

1 + (εr)2,
since it can produce very accurate interpolants, and it features a free shape parameterε

that can be adjusted to significantly improve the resulting accuracy of the interpolants.
We note also that the linear system (2) is guaranteed to be non-singular for the MQ
radial function (andε non-zero).

RBF-FD Formulation

In this section we describe how to generate the RBF-FD and RBF-CFD formulas. With-
out loss of generality, we consider a stencil consisting ofn (scattered) nodesx

1
, . . . , xn

and are interested in approximating∇2u(x
1
). Here we let∇2u(xi) := ∇2u(x)|x=xi

.



For RBF-FD formulas the goal is to find weightsci such that,∇2u(x
1
) ≈

∑n

i=1
ciu(xi).

This is accomplished by solving the linear system

A[c|µ]T =
[

∇2φ(‖x − x
1
‖) · · · ∇2φ(‖x − xn‖)︸ ︷︷ ︸

B(x)

0
]T

, (3)

whereA is the matrix in (2) (withm = 0) andµ is a dummy value related toβ in (1).

For the RBF-CFD formulas the goal now is to increase the accuracy of the approxima-
tion without increasing the stencil size. We accomplish this by using nodes whereu and
∇2u are given exactly. Letσ be a vector containing some combination of0 < m < n

distinct numbers from the set{2, . . . , n}, then we seek to find weightsci andc̃σj
such

that∇2u(x
1
) −

∑m

j=1
c̃σj

∇2u(xσj
) ≈

∑n

i=1
ciu(xi). This is accomplished by solving

the linear system

A[c|c̃|µ]T =
[

B(x) ∇4φ(‖x − xσ1
‖) · · · ∇4φ(‖x − xσm

‖) 0
]T

, (4)

whereA is the matrix in (2) andB(x) is given in (3).

For small (in magnitude) values of the shape parameterε, the linear systems (3) and
(4) will be extremely ill-conditioned. To bypass this problem, we use the Contour-
Padé algorithm (Fornberg and Wright 2004), which allows for the stable computation
of the RBF-FD and RBF-CFD weights for allε ≥ 0.

Application: Poisson’s equation

To illustrate the improved accuracy of the RBF-CFD formulas, we apply them to the
model problem

∇2u = f in Ω =
{
(x, y) | x2 + y2 < 1

}
and u = g on ∂Ω . (5)

Note that∇2u is given analytically asf in the interior. For the experiment that follows,
f andg are computed from the known solution

u(x) = u(x, y) =
25

25 + (x − 0.2)2 + 2y2
. (6)

The domain is discretized using theN = 200 points shown in Figure 1 (a). To measure
the error (which depends onε), we useE(ε) = maxi=1,...,N |u(xi, ε) − u(xi)| (i.e., the
max norm), whereu is the approximate solution. We call theε whereE(ε) reaches a
minimum the “optimal”ε.

Figure 1 (b) contains the results using then = 9 (m = 0) node RBF-FD formulas,
and the RBF-CFD formulas usingn = 9 m = 5, andn = 10 m = 9. Looking at the
error for the standardn = 9 solution and the compactn = 9 m = 5 solution, we see
that the accuracy is vastly improved. As we should expect, the accuracy can be further
improved by increasingn andm, as illustrated by then = 10 m = 9 solution. For this
example, however, any improvements appear to be lost forε approximately> 0.5. The
figure also illustrates that the optimal value ofε is small (in magnitude), and nonzero,
as is typically the case for the RBF interpolation problem. Also included in the figure
(see the dotted lines) are the results for the standard FD solutions based on a uniform
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Figure 1:(a) 200 point unstructured discretization of the unit disk.(b) The error as a function
of ε for various numerical solutions of (5).

polar mesh with approximately the same number of boundary and interior points as the
unstructured mesh. FD2 marks the results for the standard 5-node second-order FD
scheme, while CFD4 marks the results for the standard compact 9-node fourth-order
FD scheme. Comparing the non-compact FD2 andn = 9 RBF-FD solution, we see
that approximately forε < 0.48, the RBF solution is clearly better. Comparing the
CFD4 solution and then = 9 m = 5 RBF-CFD solution, which both happen to use the
same number of nodes and derivative values in their respective stencils, we see that the
RBF solution is better for all values ofε approximately< 1.05.

In all cases, the RBF-FD and RBF-CFD solutions to this problem were computed using
successive over-relaxation (SOR). Once the optimal relaxation parameter was found,
this iterative method turned out to be quite computationally effective.
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