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Abstract

In standard equispaced finite difference (FD) formulas, regtnies can make the or-
der of accuracy relatively high compared to the number ofesad the FD stencil.
With scattered nodes, such symmetries are no longer available. Thus, tmeuof
nodes in the stencils can be relatively large compared toabgting accuracy. The
generalization ofmehrstellenverfahren (compact) FD (CFD) formulas that we propose
for scattered nodes and radial basis functions (RBFs) eehithe goal of reducing
the number of stencil nodes without a similar reduction iouaacy. We analyze the
accuracy of these new compact RBF-FD formulas by applyiegntio some model
problems, and study the effects of the shape parameterrikas an, for example, the
multiquadric radial function.

Keywords: Radial basis functions, partial differentiabatjons, compact finite differ-
ence method, mesh-free

I ntroduction

An obvious approach for circumventing the geometric infidity of the standard fi-
nite difference method (FDM) for solving partial differéadtequations (PDES) is to
allow the nodes of the FD stencils to be placed freely, sodtgdod discretization of
the physical domain of the problem can be obtained. Howehesrpaturalmesh-free
idea raises questions of how the weights of the resultatjered node FD formulas
should be computed. It has recently (and what appears tadepémdently) been pro-
posed by Sht al. (2003), Tolstykhet al. (2003), Cecilet al. (2004), and the present
authors (2003) that RBF interpolants be used for computiege weights. We refer
to this idea as the RBF-FD method. The following are someoreafor using RBFs:
(1) for the appropriate choice of radial functig(r), the RBF interpolation method is
well-posed in all dimensions (unlike polynomial interpada); (2) RBF interpolants
can be very accurate at approximating derivatives; and €8 types of radial func-
tions ¢(r) feature a “shape” parameterthat allows them to vary from being nearly
flat (¢ — 0) to sharply peakeds(— oc). The recent work of, for example, Forn-
berget al. (2002) shows that all classical FD formulas can be recoveyeflat” RBF
interpolants (when the nodes are arranged accordingly).

In standard equispaced finite difference (FD) formulas,agtnies can make the order
of accuracy relatively high compared to the number of noddebe FD stencil. With
scattered nodes, such symmetries are no longer availafls, The number of nodes in



the stencils can be relatively large compared to the reguéiccuracy. To circumvent
this problem, we propose a generalization of compact finfterdnce (CFD) formulas
first introduced by Collatz (1960). The basic idea behind thethod is to keep the
stencil size fixed and to also include in the FD formula a liresanbination of deriva-

tives ofu at surrounding nodes. In the case of 1-D and equispaced nbaeseights

for these CFD formulas are typically derived using Padé@pmants. For scattered
nodes in one and higher dimensions, and for RBFs, this Ragi®ach is no longer
available. Instead, we propose a method based on HermiteriR&fpolation.

Without loss of generality, we limit the discussion to RBB-&nd RBF-CFD formulas
for the d-dimensional Laplaciaiv?.

Hermite RBF interpolation

Since the RBF-CFD formulas are ultimately obtained fromrhiee RBF interpolants,
we review in this section a method for solving the Hermitetipblation problem. We
note that the standard RBF-FD formulas are ultimately oletifrom standard RBF
interpolants, which turn out to be a special case of HermB€& Riterpolants.

Let o be a vector containing some combinatiomoK n distinct numbers from the set
{1,...,n}. Given a set of distinct data points € R%,i = 1,...,n, and corresponding
(scalar) data values(z,),i = 1,...,n, andV?u(z,, ), i = 1,...,m, the Hermite RBF
interpolation method we consider is to find an interpolarthefform

s(@) =D Moz —zl) + Do Vo(lz—z,,]) +6. (1)
i=1 j=1
Here ¢(r) is someradial function and|| - || is the standard Euclidean norm. This

method is similar to the Hermite-Birkhoff method proposgadvidu (1992). Imposing
the Hermite interpolation constraints and the additiomaistraint " , \; = 0 leads
to the following symmetric linear system of equations (iadi form)
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For the appropriate choice ¢f A is guaranteed to be non-singular (Sun 1994). Note
that form = 0, the Hermite problem reduces to the standard RBF interipol@irob-
lem.

In this study, we focus on the multiquadric (MQ) radial fupat ¢(r) = /1 + (er)?,
since it can produce very accurate interpolants, and itifeata free shape parameter
that can be adjusted to significantly improve the resulticgueacy of the interpolants.
We note also that the linear system (2) is guaranteed to besingular for the MQ
radial function (and non-zero).

RBF-FD Formulation

In this section we describe how to generate the RBF-FD and@BB formulas. With-
out loss of generality, we consider a stencil consisting (fcattered) nodes,, . ..,z
and are interested in approximatiRgu(z,). Here we le€V?u(z;) := V2u(z)|

T

T=Z;



For RBF-FD formulas the goal is to find weightssuch thatV2u(z,) = Y 7, c;u(z;).
This is accomplished by solving the linear system

Al = [ Volle—al) - Vollz-z) 0] . @

B(z)

whereA is the matrix in (2) (withr = 0) andy is a dummy value related t@in (1).

For the RBF-CFD formulas the goal now is to increase the aoyuof the approxima-
tion without increasing the stencil size. We accomplisk byi using nodes whereand
V?2u are given exactly. Let be a vector containing some combinatiorfof m < n
distinct numbers from the s¢g, ..., n}, then we seek to find weights and¢,, such
that V2u(z,) — > ¢, Vu(z, ) ~ Y. cu(z;). Thisis accomplished by solving
the linear system

7=1

T
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whereA is the matrix in (2) and3(z) is given in (3).

For small (in magnitude) values of the shape parameténe linear systems (3) and
(4) will be extremely ill-conditioned. To bypass this prebi, we use the Contour-
Padé algorithm (Fornberg and Wright 2004), which allowstfe stable computation
of the RBF-FD and RBF-CFD weights for all> 0.

Application: Poisson’s equation

To illustrate the improved accuracy of the RBF-CFD formulas apply them to the
model problem

V2u:finQ:{(x,y)|x2+y2<l} and u =g onof) . (5)

Note thatV?u is given analytically ag in the interior. For the experiment that follows,
f andg are computed from the known solution

25
25 + (z — 0.2)2 + 292

u(z) = u(z,y) = (6)
The domain is discretized using the= 200 points shown in Figure 1 (a). To measure
the error (which depends af), we useE(s) = max;—; .y |u(z;, ) — u(z;)] (i-e., the
max norm), whereé: is the approximate solution. We call thevhere E(¢) reaches a
minimum the “optimal’e.

Figure 1 (b) contains the results using the= 9 (m = 0) node RBF-FD formulas,
and the RBF-CFD formulas using= 9 m = 5, andn = 10 m = 9. Looking at the
error for the standard = 9 solution and the compaet = 9 m = 5 solution, we see
that the accuracy is vastly improved. As we should expeetatituracy can be further
improved by increasing andm, as illustrated by the = 10 m = 9 solution. For this
example, however, any improvements appear to be lostdpproximately> 0.5. The
figure also illustrates that the optimal value=ak small (in magnitude), and nonzero,
as is typically the case for the RBF interpolation problenscdncluded in the figure
(see the dotted lines) are the results for the standard RRico$ based on a uniform
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Figure 1:(a) 200 point unstructured discretization of the unit di@R. The error as a function
of e for various numerical solutions of (5).

polar mesh with approximately the same number of boundadyraerior points as the
unstructured mesh. FD2 marks the results for the standaablB-second-order FD
scheme, while CFD4 marks the results for the standard can®paode fourth-order
FD scheme. Comparing the non-compact FD2 and 9 RBF-FD solution, we see
that approximately foe < 0.48, the RBF solution is clearly better. Comparing the
CFD4 solution and the = 9 m = 5 RBF-CFD solution, which both happen to use the
same number of nodes and derivative values in their resgestiencils, we see that the
RBF solution is better for all values efapproximately< 1.05.

In all cases, the RBF-FD and RBF-CFD solutions to this pnobleere computed using
successive over-relaxation (SOR). Once the optimal rétaxgarameter was found,
this iterative method turned out to be quite computatignefiiective.
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