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Abstract

This paper presents a new tool for fitting a divergence-free vector field tangent to a two dimensional

orientable surface P ∈ R
3 to samples of such a field taken at scattered sites on P . This method, which

involves a kernel constructed from radial basis functions, has applications to problems in geophysics, and

has the advantage of avoiding problems with poles. Numerical examples testing the method on the sphere

are included.

1 Introduction

In this paper, we develop a new tool, based on radial basis functions (RBFs), for fitting a divergence-free vector
field tangent to a two dimensional orientable surface P ∈ R

3 to samples of such a field taken at scattered sites
on P . In the case where P is a sphere, there are important physical applications.

The shallow water wave equations on the surface of a rotating sphere describe the nonlinear flow of an
incompressible fluid in a single hydrostatic atmospheric layer [31]. The incompressibility assumption gives rise
to the constraint that the velocity field has vanishing surface divergence. Similar constraints on the velocity
also arise in the barotropic vorticity equation on the surface of the sphere, which provides a good model for
500-mb short-term weather forecasts in mid-latitudes [14, p.108–110]. Fitting divergence-free tangent vector
fields to data taken in these cases would help in modeling the incompressible velocity fields involved.

There are similar problems that arise in R
3. For example, both the velocity field of an incompressible

fluid and the magnetic field from a system of currents and charges are divergence free. One would like to fit
such data with a divergence-free vector field. Also, if a set of velocity data is generated by an irrotational
fluid, then fitting it with a curl-free vector field is appropriate. Several years ago, divergence-free RBFs and
curl-free RBFs were introduced [23] to help in handling such problems. Unfortunately, when restricted to a
sphere or to a surface P , these RBFs, which are constructed to be divergence-free or curl free in R

3, lose those
properties.

Our goal is to use RBFs to construct a positive definite kernel that can be used to obtain a divergence-free
field of tangent vectors on a sphere or a surface P . As we mentioned above, these are not merely matrix-valued
RBFs restricted to a surface. Moreover, one may use extrinsic coordinates in conjunction with these kernels.
For the case of the sphere, this means that polar regions can be treated in the same way as any other region
of the sphere. We will call these kernels divergence-free RBFs on P , where it will be tacitly understood that
the term divergence refers to that for the surface P as imbedded in R

3. In Section 2, we will carry out the
construction of the kernels, and, in Section 3, we will show how to implement them to create divergence-free
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vector-field interpolants. In particular, we show that the interpolation matrices involved are positive definite
and therefore invertible.

Section 4 contains the results of numerical experiments conducted when the surface is a sphere. In Section
4.1, we list three vector fields that we will sample, including a field similar to the one used in Test Case 4 of [31].
This field in particular is meant to exhibit some of the properties of flow in the middle level troposphere. The
other fields are used to test various aspects of the method. We then employ our method to reproduce these
test fields under various conditions, with various RBFs, and we then compare the results for our method with
those from more traditional methods. The numerical results we get are listed in the tables in Section 4.5, and
demonstrate the superiority of our method over more traditional RBF methods.

The numerical evidence suggests that these divergence-free RBF interpolants on S
2 convergence nicely.

This is not a surprise. Very recently Fuselier [7, 8, 9] and Lowitzsch [19, 20] have studied both stability
and convergence properties for interpolants generated by the matrix-valued RBFs introduced in [23]. In
particular, Fuselier [8] obtained good, Sobolev-type error estimates for the matrix-valued interpolants to
smooth divergence-free or curl-free vector fields in R

2 and R
3. Currently, we are working on error estimates

and stability properties for these new interpolants.

2 Divergence-free RBFs on P
We now turn to constructing divergence-free RBFs on a surface P , assuming that the surface, which is
imbedded in R

3, is smooth and orientable. The easiest way to get things straight is to use differential forms.
The books by Bishop & Goldberg [1] and by Flanders [4] are good references here. One can also use old-
fashioned vector calculus, but the arguments need to be “tweaked” to be made rigorous. In the next few
paragraphs, we will review some standard results from differential geometry. This also serves to establish
notation.

The general setup is this. A vector field v on P (i.e., one that is tangent to P at every point) can be
expressed in a local patch as v = v1e1 + v2e2, where {e1, e2} form a smoothly varying orthonormal frame of
tangent vectors at each x in the local patch. The normal to P at x is n = e1 × e2, which makes {e1, e2,n} a
right-handed orthonormal frame. (All vectors vary with x, but for the moment we will suppress this.)

We can identify v with a differential form ν via duality,

ν = v · dx = v1 e1 · dx︸ ︷︷ ︸
σ1

+v2 e2 · dx︸ ︷︷ ︸
σ2

= v1σ1 + v2σ2 .

The divergence of v is just d ∗ ν, where ∗ is the (2-dimensional) Hodge star operator. For a right-handed
orthonormal basis for the tangent space, the ∗ operator has the following effect on σ1 and σ2: ∗σ1 = σ2 and
∗σ2 = −σ1.

It would be easy to compute the divergence of v, now. However, this isn’t the object here. Instead,
we want to produce a divergence-free vector field. On P , every 1-form looks like ω = a1σ1 + a2σ2. Since
∗ω = a1σ2−a2σ1 = b1σ1 +b2σ2, it is still an arbitrary 1-form. Take ν = ∗ω, and note that d∗ν = d∗∗ω = dω.
By the converse of the Poincaré lemma, if d ∗ ν = dω = 0, then one has f : P → R such that ω = df , locally.

We can put this in terms of vector fields. First, df = ∇f ·dx, so ω = df ↔ ∇f . Second, ν = ∗ω ↔ n×∇f .
Finally, d ∗ ν = 0 ↔ divP(n ×∇f) = 0. We have thus shown that a vector field v on P is divergence free if
and only if locally there exists f : P → R such that v = n×∇f .

The function f can be defined on R
3 and then restricted to P , because the cross product n×∇f eliminates

any component along n. This means that we may use extrinsic coordinates to deal with P .
At this point, we will use Cartesian coordinates in R

3 and regard vectors there as columns. Let

Φ(x) =

∫

R3

[
eiξ·x − 1 − iξ · x

]
Φ̂(ξ)

d3ξ

(2π)3
, (1)

where Φ̂(ξ) > 0 and
∫

R3 |ξ|2Φ̂(ξ)dξ < ∞. The function Φ is conditionally positive definite of order 1 [10, 21, 28]
on R

3. Moreover, Φ is in C2(R3) [28, Theorem 4.1], so we can form its Hessian,

∇∇T Φ = −
∫

R3

Φ̂(ξ)ξξT ei(x−y)T ξ d3ξ

(2π)3
.

Note that
nx ×∇x

(
eixT ξ

)
= ieixT ξ nx × ξ = i Xnx

ξeixT ξ ,
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where na is the normal to P at a, ∇a is the gradient with respect to a, and

Xa =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 , and Xa b = a × b, a,b ∈ R

3.

In the same way, we get {
ny ×∇y

(
e−iyT ξ

)}T

= −iξT XT
ny

e−iyT ξ .

From these two equations we easily see that the kernel

Ψ(x,y) := Xnx

{∫

R3

Φ̂(ξ)ξξT ei(x−y)T ξ d3ξ

(2π)3

}
XT

ny

= −Xnx
(∇∇T Φ(x − y))XT

ny
(2)

is nonnegative and divergence free, when x and y belong to P . We summarize these observations below.

Theorem 2.1 Let P be a smooth, orientable manifold in R
3, possibly with boundary, and let nx denote the

unit normal to P at x ∈ P. Then, the kernel given in (2) is nonnegative and divergence free when x and y

belong to P.

We now turn to calculating Ψ when the kernel Φ is radial; that is, when Φ(x) = Φ(|x|). We will start by
finding the Hessian matrix ∇∇T Φ(x) in Cartesian coordinates. Let r = |x|. The j, k component of the matrix
is then easily shown to be

∂2Φ

∂xj∂xk
= δj,k

1

r
Φ′(r)

︸ ︷︷ ︸
F (r)

+xjxk
1

r

(
1

r
Φ′(r)

)′

︸ ︷︷ ︸
G(r)

.

From this we have that
∇∇T Φ(x − y) = F (r)I + G(r)(x − y)(x − y)T ,

where r = |x− y| and I is the identity matrix. Carrying out the multiplications implicit in (2), we arrive at

Ψ(x,y) =

F (r)
(
nyn

T
x
− nT

y
nxI

)
− G(r) (nx × (x − y)) (ny × (x − y))T .

(3)

When P = S
2, the unit sphere in R

3, the normals are just nx = x and ny = y. Using this in the previous
formula gives us

Ψ(x,y) = F (r)
(
yxT − yT xI

)
− G(r)(x × y)(x × y)T . (4)

Of course, here we have r = |x − y| = 2 sin(θ/2), where θ is the angle between x and y.
We return to the general case of a surface patch P . When x and y are fixed points on P , the kernel Ψ(x,y)

is a linear map that takes a tangent vector s at y to a tangent vector at x. Set s̃ = ny × s. From (3), we see
that

Ψ(x,y)s = nx ×
{
F (r)s̃ + G(r)(x − y)(x − y)T s̃

}
. (5)

If t is tangent to P at x, and if t̃ = nx × t, then we also have

tT Ψ(x,y)s = −F (r)t̃T s̃− G(r)(x − y)T t̃(x − y)T s̃. (6)

3 Divergence-free RBF interpolants on P
Let the vectors t1, . . . , tN be tangent to P at points x1, . . . ,xN , respectively. We want to interpolate the tj ’s
with a divergence-free vector field of the form

t(x) =

N∑

k=1

Ψ(x,xk)sk, (7)
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where sk and t(x) are tangent to P at xk and x, respectively. Doing this requires that we solve the linear
system below for the sk’s:

tj =

N∑

k=1

Ψ(xj ,xk)sk, j = 1, . . . , N.

At each xk, choose ek to be a unit vector tangent to P at xk and let fk = nk ×ek. The triple {ek, fk,nk} is
a right-handed, orthonormal 3-frame at xk, and {ek, fk} is an orthonormal basis for the tangent space there.
Express the tj ’s and sk’s in terms of the appropriate basis:

sk = αkek + βkfk and tj = γjej + δjfj .

Using these in conjunction with the linear system above, we obtain the following system of equations,

(
γj

δj

)
=

N∑

k=1

(
eT

j

fT
j

)
Ψ(xj ,xk)

(
ek fk

)

︸ ︷︷ ︸
A

(2)
jk

(
αk

βk

)
, j = 1, . . . , N. (8)

Next, we will use (6) to find the 2 × 2 matrix A
(2)
jk in the sum above. In doing so, keep in mind that ẽ = f

and f̃ = −e.

A
(2)
jk =

(
eT

j

fT
j

)
Ψ(xj ,xk)

(
ek fk

)
=

−
(

fT
j

−eT
j

) {
F (rjk)I+G(rjk)(xj − xk)(xj − xk)T

} (
fk −ek

)
,

(9)

where rjk = |xj − xk|. Note that we have (A
(2)
jk )T = A

(2)
kj .

In the case of the sphere, this formula simplifies somewhat. The normal nj is just xj . Consequently the
terms xT

j ej and xT
j fj vanish. Switching to “dot” product notation, this gives us

A
(2)
jk =

F (rjk)

(
−fj · fk fj · ek

ej · fk −ej · ek

)
+ G(rjk)

(
fj · xk

−ej · xk

) (
xj · fk −xj · ek

)
.

(10)

The object now is to solve the system (8). Let A be the 2N × 2N matrix composed of the blocks A
(2)
jk in

(9), let c = (α1 β1 · · · αN βN )T , and finally let d = (γ1 δ1 · · · γN δN )T . The 2N ×1 column vector c contains
the coefficients we want to find, and d contains the data we know. The system (8) then becomes Ac = d, and
it has a unique solution if and only if we can invert A. The lemma and the theorem that follow establish that
A is not only invertible, but also that it is positive definite.

Lemma 3.1 Let A be as above, and let Ψ be given by (2), then

cT Ac =

∫

R3

Φ̂(ξ)|ξTv(ξ)|2 d3ξ

(2π)3
(11)

where v(ξ) =
∑N

k=1 s̃ke−ixT
k ξ and s̃k = nk × sk.

Proof: From (8), we have that

cT Ac =

N∑

j=1

N∑

k=1

(
αj βj

) (
eT

j

fT
j

)
Ψ(xj ,xk)

(
ek fk

) (
αk

βk

)

=

N∑

j=1

N∑

k=1

sT
j Ψ(xj ,xk)sk. (12)

Next, from (2) we have that

sT
j Ψ(xj ,xk)sk = sT

j Xnj

{∫

R3

Φ̂(ξ)ξξT ei(xj−xk)T ξ d3ξ

(2π)3

}
XT

nk
sk.
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Since we have XT
nk

sk = −Xnk
sk = −nk × sk = −s̃k and, similarly, sT

j Xnj
= −s̃j, we see that

sT
j Ψ(xj ,xk)sk =

∫

R3

Φ̂(ξ)

(
s̃T
j ξeixT

j ξ

)(
ξT s̃ke−ixT

k ξ

)
d3ξ

(2π)3
.

Using the expression above in (12) and simplifying, we obtain (11). �

Theorem 3.2 A is positive definite and therefore invertible.

Proof: By the lemma above, A is positive semi-definite. To show that it is positive definite, we need only
show that cT Ac = 0 forces c = 0. From (11), cT Ac = 0 implies that the integrand, Φ̂(ξ)|ξTv(ξ)|2, which is

continuous and nonnegative, is 0. Since Φ̂(ξ) > 0, we may cancel it to get ξTv(ξ) ≡ 0, or, equivalently,

N∑

k=1

ξT s̃ke−ixT
k ξ ≡ 0.

The expression on the left is a tempered distribution in ξ. Take the inverse Fourier transform of both sides
and cancel constant factors to obtain

N∑

k=1

s̃k · ∇δ(x − xk) ≡ 0.

Integrate this distribution against a smooth “bump” function supported in a small ball, which is centered at
a given xk and excludes all other xk’s. In addition, take the function’s gradient at xk equal to s̃k. The result
will be s̃k · s̃k = sk · sk = α2

k + β2
k = 0, and so αk = βk = 0 for all k. Hence, c = 0. �

3.1 Implementation

We summarize the steps in finding the interpolant t(x), given points x1, . . . ,xN on P and data vectors
t1, . . . , tN tangent at each of these points.

1. At each xk, find the (unit) normal nk, then choose a unit tangent vector ek, and finally find fk = nk×ek.
On the unit sphere, these can be chosen so that nk = xk, ek is the north-pointing unit vector along
the longitude, and fk is the east-pointing unit vector along the latitude. If the north or south poles are
among the data points, simply choose vectors there.

2. Find the coordinates γk and δk for tk relative to {ek, fk}. Form the data vector d = (γ1 δ1 · · · γN δN )T .

3. Find the 2 × 2 matrices A
(2)
jk from (9), or from (10) in the case of the sphere. Use these to form the

matrix A.

4. Solve Ac = d for c = (α1 β1 · · · αN βN )T .

5. Find s̃k = −βkek + αkfk. From (5), we have

Ψ(x,xk)sk = nx ×
{
F (|x − xk|)s̃k + G(|x − xk|)(x − xk)(x − xk)T s̃k

}
,

which we then sum to obtain t(x) via (7).

In the last step, the output will be in Cartesian coordinates. If instead one would like the output to be given
in terms of a basis of tangent vectors {e(x), f(x)} (e.g., the latitude and longitude vectors on the sphere), then
we can use (6) to calculate the appropriate components. Specifically, in the case of the unit sphere, where
x = n, we have 




e · t =
∑N

k=1{−F (|x − xk|)f · s̃k + G(|x − xk|)(f · xk)(x · s̃k)}

f · t =
∑N

k=1{F (|x − xk|)e · s̃k − G(|x − xk|)(e · xk)(x · s̃k)}.
(13)

We now turn to a discussion of numerical results for the case in which P is the sphere, which is one of the
most important applications of the method.
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4 Numerical Examples

In this section we apply the theory from the previous sections to specific examples. We focus on the case of
divergence-free vector fields on the surface of the sphere. As we mentioned in Section 1, this case has many
relevant physical applications. For several different divergence-free fields, we compare the accuracy of the
divergence-free RBF interpolation method presented above to the standard RBF interpolation method where
each component of the vector field is interpolated separately (see Section 4.2).

Following the notation from the previous section applied to the sphere, we let xk = (xk, yk, zk)T , k =
1, . . . , N , be distinct data locations on the unit sphere and (θk, λk), k = 1, . . . , N , the corresponding spherical
latitude-longitude coordinates such that

xk = cosλk cos θk,

yk = sinλk cos θk, (14)

zk = sin θk.

(Note that we measure latitude from the equator rather than the north pole). Let uk = (γk, δk, 0)T =
(γ(θk, λk), δ(θk, λk), 0)T , k = 1, . . . , N , be samples of some divergence-free vector field in spherical coordinates
at the data locations, where γ, δ, and 0 correspond to the θ, λ, and radial directions, respectively. Then uk

can be converted to Cartesian coordinates using the transformation

tk =



− sin θk cosλk − sinλk cos θk cosλk

− sin θk sin λk cosλk cos θk sinλk

cos θk 0 sin θk




︸ ︷︷ ︸
Qk

uk. (15)

The first two columns of Qk form an orthonormal basis for the tangent space of the unit sphere and we thus
assign these vectors to ek and fk, respectively:

tk = γk




− sin θk cosλk

− sin θk sin λk

cos θk





︸ ︷︷ ︸
ek

+δk




− sin λk

cosλk

0





︸ ︷︷ ︸
fk

. (16)

Note that since Qk is orthogonal, the vector field in Cartesian coordinates can be translated back to spherical
coordinates by uk = QT

k tk.

4.1 Test vector fields

The divergence of a vector field u = (γ, δ, 0)T on the surface of the unit sphere is given by

∇ · u =
1

cos θ

(
∂(γ cos θ)

∂θ
+

∂δ

∂λ

)
. (17)

To generate vector fields such that ∇·u = 0, we use a scalar “stream function” Ω. The latitude and longitude
components of u are then given by

γ =
1

cos θ

∂Ω

∂λ
, (18)

δ = −∂Ω

∂θ
. (19)

For the numerical experiments, we use three vector fields of varying character and smoothness as described
below.

1. This field is similar to the one used in Test Case 4 of [31] and is meant to exhibit some of the properties
of flow in the middle level troposphere. We will use it to test the accuracy of the divergence-free RBF
technique for infinitely smooth fields. Let

Ω(θ, λ; σ, θc, λc) = e−(σρ)2 , (20)
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where
ρ = arccos(sin θc sin θ + cos θc cos θ cos(λ − λc)) (21)

is the geodesic (or great circle) distance from (θc, λc) to (θ, λ). Then the vector field is generated from
the stream function

Ω1(θ, λ) =
2

3

∫ θ

−π/2

sin14 2τdτ − Ω(θ, λ; 8, π/4, 0) + Ω(θ, λ; 8,−π/4, 0). (22)

In terms of a wind field, this flow models two low pressure systems in a jet stream that is symmetrical
about the equator [31]. Figure 1(a) displays this field on the surface of the unit sphere.

2. This field is somewhat similar to the first, however, the flow is compactly supported. It is designed to
test the accuracy of the new RBF technique on divergence-free fields with finite smoothness. Let

Ω̃(θ, λ; σ, θc, λc) =
σ3

12

4∑

j=0

(−1)j

(
4

j

) ∣∣∣∣ρ − (j − 2)

σ

∣∣∣∣
3

,

where ρ is again the geodesic distance (21). Ω̃ is a cubic B-spline in ρ with two continuous derivatives
and is positive for |ρ| < 2/σ and zero elsewhere. We generate the vector field for this second test from
the stream function

Ω2(θ, λ) =
2

3

∫ θ

−π/2

sin14 2τdτ − Ω̃(θ, λ; 4,−2π/9,−π/7). (23)

Since Ω̃ is only C2, the resulting vector field generated from Ω2 will only be C1, which is a more realistic
model of physical data. The field is displayed in Figure 1(b).

3. While the first two test fields have zero flow over both poles, the third test has flow directly over the
poles with very strong flow over the north pole. A non-zero flow over either pole is known to cause
difficulties with many interpolation/approximation methods on sphere since, in spherical coordinates,
the latitudinal and longitudinal components of the vector field will be discontinuous there [29]. This test
is designed to show that the divergence-free RBF technique has no difficulties with non-zero flow over
the poles since it operates on vector fields in Cartesian form, where the components are smooth over the
whole sphere. The field is generated from the stream function

Ω3(θ, λ) = − 5(sin(θ) cos(π/2 − 0.05) − cosλ cos θ sin(π/2 − 0.05))

+ Ω(θ, λ; 9, π/2 − 0.05, π/2− 0.1) − Ω(θ, λ; 8,−π/2 − 0.1,−π/2 + 0.1), (24)

where Ω is given in (20). The first term in this equation correspond to a stream function for zonal flow
(or solid body rotation) at angle nearly coincident with the north pole. The second two terms generate
a rotating flow near the north pole. See Figure 1(c) for a plot of this field as viewed from the north pole.

4.2 Standard RBF interpolation

We briefly discuss the standard RBF interpolation method used for comparison with the divergence-free
method. We refer the reader to any of the books [2, 16, 30] for a more in depth discussion of the standard
method.

Similar to the beginning of this section, let xk = (xk, yk, zk)T , k = 1, . . . , N , be distinct data locations
on the unit sphere and uk = (γk, δk, 0)T , k = 1, . . . , N , be the corresponding samples of some divergence-free
vector field in spherical coordinates at these locations. For the standard RBF interpolation method, we first
translate uk to Cartesian coordinates tk using (16), and then interpolate the samples from each component
in Cartesian coordinates separately.

Let (txk, tyk, tzk) correspond to the components of tk in the x, y, and z directions, respectively. We define
the standard RBF interpolant p(x) to the vector field as

p(x) =



px(x)

py(x)

pz(x)


 =




∑N
k=1 bx

kΦ(|x − xk|)∑N
k=1 by

kΦ(|x − xk|)∑N
k=1 bz

kΦ(|x − xk|)


 , (25)
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Test Vector Field 1

(a)

Test Vector Field 2

(b)

Test Vector Field 3

(c)

Figure 1: Vector fields used in the numerical examples generated from the stream functions (a) Ω1 in (22), (b)
Ω2 in (23) and (c) Ω3 in (24). (a) and (b) are orthographic projections of the field viewed from (0, 0) degrees
latitude–longitude, while (c) is viewed from the north pole.

where the expansion coefficients bx
k, by

k, and bz
k, k = 1, . . . , N , are determined from the interpolation conditions

p(xk) = tk, k = 1, . . . , N . This leads to the following N -by-N symmetric matrix problem with three right
hand sides:




Φ(|x1 − x1|) Φ(|x1 − x2|) · · · Φ(|x1 − xN |)
Φ(|x2 − x1|) Φ(|x2 − x2|) · · · Φ(|x2 − xN |)

...
...

. . .
...

Φ(|xN − x1|) Φ(|xN − x2|) · · · Φ(|xN − xN |)







bx
1 by

1 bz
1

bx
2 by

2 bz
2

...
...

...

bx
N by

N bz
N




=




tx1 ty1 tz1
tx2 ty2 tz2
...

...
...

txN tyN tzN




.

This matrix is positive definite for all positive definite radial kernels Φ(r) and conditionally negative definite
with N − 1 negative eigenvalues and 1 positive eigenvalue for all order 1 positive definite radial kernels
(cf. [2, 16, 30]). Note that for the standard method a linear system of size N -by-N needs to be solved,
whereas for the divergence-free method the solution of a 2N -by-2N system is required. However, the standard
method completely decouples the components of the vector fields and does not exploit any information about
its divergence-free nature.

If desired, the standard RBF interpolant p(x) can be translated back to spherical coordinates using QTp(x),
where Q is given by in (15) with (θ, λ) the corresponding spherical coordinates of x.
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4.3 Node distributions

Both standard and divergence-free RBF interpolation are well-posed for any distinct set of nodes on the
surface of the sphere. For interpolation in R

d with the standard method, studies have shown that best results
are achieved with roughly evenly distributed nodes [16, pp.59–61]. Since only a maximum of 20 nodes can
be evenly distributed on a sphere, there are a multitude of algorithms to define “even” distribution for larger
numbers of nodes, such as equal partitioned area, convex hull approaches, electrostatic repulsion, etc. [12].
Although any of these will suffice, we have decided to use the electrostatic repulsion nodes (which are also
known as the minimum energy (ME) nodes) for our tests since these nodes do not line up along any vertices
or lines, emphasizing the arbitrary node layout of the RBF technique. Many different of these node sets are
also readily available for download [32].

Let xk = (xk, yk, zk)T , k = 1, . . . , N be a set of N nodes on the unit sphere S
2 and consider the following

measure of the density of the points:

h = max
x∈S2

min
1≤k≤N

dist(x,xk), (26)

where dist is the geodesic distance from x to xk (see (21)). This quantity is referred to as the mesh-norm [32, 17]
and, geometrically, it represents the radius of the largest spherical cap that can be placed on the sphere without
covering any nodes xk. The ME node sets have the property that h decays approximately uniformly like the
inverse of the square root of the number of nodes N , i.e.

h ∼ 1√
N

.

Thus, they are similar to a uniform discretization of the unit square. Figure 2 displays the N = 1024 ME
node distribution, which is also the same node distribution used to display the vector fields in Figure 1.

Figure 2: Orthographic projection of the N = 1024 minimum energy (ME) node distribution on the sphere
used in the examples. Solid black circles mark the node locations.

The mesh norm is also of practical importance since it appears in many proofs of error bounds for standard
RBF interpolation on the sphere (e.g. [17, 15]). Indeed, in the context of infinitely smooth radial kernels, it
is shown in [17] that, provided the underlying function being interpolated is sufficiently smooth, the standard
RBF interpolation method converges (in the max. norm) like h−1/2e−c/4h, i.e at a geometric rate, for some
constant c > 0 that depends on the radial kernel. For the ME node sets, convergence will thus proceed like

N1/4e−c
√

N/4. In the experiments that follow, we test this convergence rate also for the divergence-free RBF
method.

4.4 Radial kernels

As proved in Theorem 3.2, any positive definite or order 1 positive definite radial kernel Φ(r) leads to a
well-posed divergence-free RBF interpolation problem. As noted above, this result also holds for the standard

9



Radial Kernel Φ(r) F (r) =
1

r
Φ′(r) G(r) =

1

r
F ′(r)

Gaussian (GA) e−(εr)2 −2ε2e−(εr)2 4ε4e−(εr)2

Smoothness C∞ C∞ C∞

Multiquadric (MQ)
√

1 + (εr)2
ε2

√
1 + (εr)2

− ε4

(1 + (εr)2)3/2

Smoothness C∞ C∞ C∞

Matérn (MAν)
21−ν

Γ(ν)
(εr)νKν(εr), −21−ν

Γ(ν)
ε2(εr)ν−1Kν−1(εr),

21−ν

Γ(ν)
ε4(εr)ν−2Kν−2(εr),

Smoothness Cm, ν > m ≥ 0 Cm−1, ν > m ≥ 1 Cm−2, ν > m ≥ 2

Table 1: The radial kernels used in the numerical examples. In all cases, ε is the shape parameter and is
always positive. For the Matérn class, Kν corresponds to the K-Bessel function of order ν, ν is a positive real
number, and m is a non-negative integer.

RBF method. While this allows for a very large choice of available kernels, we have selected three for the
numerical tests. These are listed in Table 1 together with the corresponding kernels F (r) and G(r) used in
the divergence-free RBF method. We briefly describe them below:

• The Gaussian (GA) kernel is undoubtedly the most well-known of all positive definite radial kernels
and it dates back to Schoenberg’s pioneering work [27] in the field. As indicated in the table, it is an
infinitely smooth kernel.

• The multiquadric (MQ) kernel is used extensively in applications and originated from Hardy’s pioneering
work [13] in RBFs. It is an order 1 positive definite kernel and is similarly infinitely smooth.

• The Matérn (MAν) class of kernels was introduced in [22] and is arguably the most important and most
popular family of kernels for statistical applications of RBFs [11]. These kernels are positive definite, but
have finite smoothness that depends on the parameter ν as indicated in Table 1. When ν is a positive
half-integer, they reduce to the product of an exponential with a polynomial. For example, for ν = 13

2 ,
we get the following Matérn kernel:

MA 13

2

: Φ(r) = e−εr

(
1 + (εr) +

5

11
(εr)2 +

4

33
(εr)3 +

2

99
(εr)4 +

1

495
(εr)5 +

1

10395
(εr)6

)
,

which, according to Table 1, is C6 (recall r = |x|). For the numerical examples, we use Matérn kernels of
differing smoothness that correspond to the smoothness of the test vector field. However, we note that,
since the divergence-free RBF method depends on the second derivative of the radial kernels (the G(r)
function in the third column of Table (1)), these interpolants will have two less orders of smoothness.
In the case of the Matérn family, this means that we must use the kernel MAν+2 in the divergence-free
RBF method to be consistent with the standard RBF method when using the kernel MAν . The kernels
used for each test are summarized in Table 2.

Test Vector Standard Divergence-free Interpolant

Field RBF Method RBF Method Smoothness

Ω1 MA 13

2

MA 17

2

C6

Ω2 MA 3

2

MA 7

2

C1

Ω3 MA 13

2

MA 17

2

C6

Table 2: The Matérn (MAν) kernels used in the standard and divergence-free methods (and their smoothness)
for each of the test vector fields.
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We can see from Table 1 that each of the kernels for the numerical examples features a free shape parameter
ε > 0. In all cases, as ε decreases to zero the kernels become increasingly flat. It has generally been reported
in the literature that, for the standard RBF method, there is typically an optimal value of ε that produces the
best accuracy and this value tends to decrease with increasing smoothness of the underlying function being
approximated (e.g. [24]). However, as ε decreases, the shifted radial kernels Φ(|x−xk|) in the RBF interpolant
become less and less distinguishable from one another, leading to ill-conditioning in the resulting interpolation
matrices. This is the so-called “uncertainty principle” for RBF interpolation [26]. While it has been shown
that RBF interpolants are overall well-conditioned even in the limit of ε → 0 (cf. [3, 18]), special algorithms
like Contour-Padé [6] and RBF-QR [5] are needed for these smaller values.

In the numerical results that follow, we do not employ any of these special algorithms or try to determine
the “optimal ε”. Instead, we select ε so that the condition numbers of the standard and divergence-free RBF
interpolation matrices is roughly equal and remains roughly constant as the number of nodes increases. As
shown next, we are able to get good results with this strategy. We leave the exploration of the dependence of
the divergence-free RBF method on the shape parameter ε to a separate study.

4.5 Numerical results

For each of the three example vector fields (22)–(24), we compute the (vector-valued) divergence-free and
standard RBF interpolants based on the three radial kernels mentioned above for ME node distributions of
increasing size. We then evaluate these interpolants on a set of 21,952 nodes which densely cover the surface
of the sphere and are generated by the “spiral points” algorithm in [25]. Finally, we compute the difference
between these values and the true vector fields at the evaluation points, and compute the relative `∞ (i.e.
max. norm) error in each component, (γ, δ), of the vector field. The results are presented numerically in
Tables 3–5 and graphically in Figures 3–5 for the respective fields (22)–(24).

Comparing the results for the divergence-free and standard interpolants for the first vector field (22) (cf.
Table 3 and Figure 3), we see that error in the former is smaller than the latter for all three of the kernels and
values of N (except the GA kernel and N = 529). This difference becomes more pronounced as N increases,
with the error in the divergence-free method about an order of magnitude smaller. From the plot of the errors
in the two components of the vector field in Figure 3 (displayed on a log vs. linear scale), we see that both the
divergence-free and standard methods are exhibiting geometric convergence (recall that

√
N is approximately

inversely proportional to the spacing of the nodes as measured by (26)). This is expected for the latter method,
as discussed in Section 4.3, since both components of the vector field are C∞ functions. As mentioned in the
introduction, a theoretical understanding of the accuracy of the divergence-free method is not yet available,
but will be pursued in a separate study. The GA seems to be the most accurate of the three kernels in both
the divergence-free and standard methods, while the MQ is second. This is expected since these are both C∞

kernels, while the MAν is only C6. By increasing the smoothness of the MAν kernel, we expect to get results
closer to those of the GA and MQ.

The second vector field (23) is only C1 and, as expected, we see from Table 4 and Figure 4 that the
convergence rate of both the divergence-free and standard interpolants has been diminished to low-order
algebraic (note the log vs. log scale on both plots in the figure) and is much less steady than for the first
field. For the MQ and MAν kernels, we see that the divergence-free method is again out performing the
corresponding standard methods, with the MQ producing the best results. This is a bit surprising since the
MQ kernel is C∞ while the MAν kernel used here is C1, matching that of the vector field. Interestingly, for
the GA kernel, the error in both components of the vector field for the standard method is smaller than for
the divergence-free method. However, as we can see in the last pair of columns of Table 4, the latter method
results in an exactly divergent-free field while the divergence of the former is relatively large.

The results for the last vector field (24) in Table 5 and Figure 5 are similar to those of the first, with
the divergence-free method far out performing the standard method for all the radial kernels. While the
components of this field in spherical coordinates are discontinuous at the poles, we see that this has no effect
on the high accuracy that is achieved with either the divergence-free or standard method. Indeed, Figure 4
(plotted on a log vs. linear scale) again shows both of the these interpolation methods exhibiting geometric
convergence.

As mentioned in Section 4.2, the divergence-free method requires solving a 2N -by-2N linear system of
equations whereas the standard method requires solving an N -by-N system. So, if comparing the two methods
in terms of computational cost, one should compare the accuracy of the divergence-free method with N nodes
and the standard method with 2N nodes. When this is done for the results from Tables 3–5, we see that the
error in the standard method is generally smaller. However, regardless of the number of nodes, the standard
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Example Vector Field 1, u = (γ, δ, 0)T

Relative `∞ Error, γ Relative `∞ Error, δ `∞ Error, ∇ · u
N

√
N Div. Free Std. Div. Free Std. Div. Free Std.

G
A

K
er

n
el

529 23 5.40 · 10−1 4.58 · 10−1 1.64 · 10−1 1.94 · 10−1 0 2.04 · 101

1024 32 1.00 · 10−2 6.31 · 10−2 4.76 · 10−3 2.60 · 10−2 0 6.97 · 100

1521 39 1.26 · 10−3 1.86 · 10−2 6.02 · 10−4 7.41 · 10−3 0 1.36 · 100

2025 45 2.26 · 10−4 2.54 · 10−3 7.38 · 10−5 1.34 · 10−3 0 2.32 · 10−1

2601 51 3.34 · 10−5 2.76 · 10−4 1.76 · 10−5 1.72 · 10−4 0 3.50 · 10−2

M
Q

K
er

n
el 529 23 2.49 · 10−1 4.61 · 10−1 1.05 · 10−1 1.91 · 10−1 0 1.97 · 101

1024 32 1.60 · 10−2 6.65 · 10−2 8.58 · 10−3 2.78 · 10−2 0 6.21 · 100

1521 39 3.80 · 10−3 2.10 · 10−2 1.64 · 10−3 8.48 · 10−3 0 1.50 · 100

2025 45 5.88 · 10−4 2.99 · 10−3 2.18 · 10−4 1.46 · 10−3 0 3.18 · 10−1

2601 51 8.63 · 10−5 3.49 · 10−4 4.68 · 10−5 2.49 · 10−4 0 5.36 · 10−2

M
A

ν
K

er
n
el 529 23 2.39 · 10−1 4.63 · 10−1 1.03 · 10−1 1.92 · 10−1 0 2.00 · 101

1024 32 1.76 · 10−2 6.88 · 10−2 9.65 · 10−3 2.87 · 10−2 0 6.43 · 100

1521 39 4.61 · 10−3 2.23 · 10−2 1.95 · 10−3 8.96 · 10−3 0 1.58 · 100

2025 45 6.81 · 10−4 3.33 · 10−3 2.46 · 10−4 1.52 · 10−3 0 3.69 · 10−1

2601 51 8.54 · 10−5 4.45 · 10−4 5.23 · 10−5 3.00 · 10−4 0 7.03 · 10−2

Table 3: Comparison of the relative `∞ error for the divergence-free RBF method (Div Free) vs. the standard
RBF method (Std) for the vector field u generated from the stream function Ω1 in (22). N is corresponds to
number of ME nodes (see Section 4.3) used for sampling the function.

√
N is included since it is approximately

inversely proportional to the spacing of the nodes (as measured by 26). The last column pair corresponds to
the `∞ error in the divergence of interpolants of the two methods.
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Figure 3: Plot of the results from Table 3 for the vector field u = (γ, δ, 0)T generated from the stream function
Ω1 in (22). Note the log vs. linear scale on the plots.

method fails to preserve the divergence-free nature of the field. Furthermore, for experimental data, it is not
always possible to increase the number of observations in order to increase the accuracy of the approximation.
As the results indicate, in case of a fixed number of nodes N , the divergence-free method generally produces
much better results than the standard method.
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Example Vector Field 2, u = (γ, δ, 0)T

Relative `∞ Error, γ Relative `∞ Error, δ `∞ Error, ∇ · u
N

√
N Div. Free Std. Div. Free Std. Div. Free Std.

G
A

K
er

n
el

529 23 4.36 · 10−2 3.39 · 10−2 1.11 · 10−2 1.04 · 10−2 0 9.31 · 10−1

1024 32 5.88 · 10−2 4.80 · 10−2 1.12 · 10−2 1.39 · 10−2 0 9.83 · 10−1

1521 39 3.42 · 10−2 2.98 · 10−2 1.15 · 10−2 9.02 · 10−3 0 1.04 · 100

2601 51 2.71 · 10−2 1.15 · 10−2 5.31 · 10−3 2.38 · 10−3 0 5.86 · 10−1

4096 64 1.42 · 10−2 7.85 · 10−3 3.53 · 10−3 2.12 · 10−3 0 4.51 · 10−1

M
Q

K
er

n
el 529 23 3.83 · 10−2 3.38 · 10−2 1.16 · 10−2 1.19 · 10−2 0 1.07 · 100

1024 32 2.23 · 10−2 4.24 · 10−2 5.99 · 10−3 1.14 · 10−2 0 9.01 · 10−1

1521 39 1.87 · 10−2 3.02 · 10−2 6.44 · 10−3 8.94 · 10−3 0 9.28 · 10−1

2601 51 7.54 · 10−3 1.09 · 10−2 2.16 · 10−3 2.54 · 10−3 0 5.82 · 10−1

4096 64 4.05 · 10−3 7.76 · 10−3 1.02 · 10−3 2.02 · 10−3 0 4.12 · 10−1

M
A

ν
K

er
n
el 529 23 4.12 · 10−2 5.64 · 10−2 1.15 · 10−2 2.10 · 10−2 0 2.33 · 100

1024 32 3.38 · 10−2 4.11 · 10−2 9.36 · 10−3 9.06 · 10−3 0 1.08 · 100

1521 39 2.40 · 10−2 3.17 · 10−2 7.04 · 10−3 8.39 · 10−3 0 7.58 · 10−1

2601 51 9.16 · 10−3 1.44 · 10−2 2.56 · 10−3 3.84 · 10−3 0 7.10 · 10−1

4096 64 6.57 · 10−3 8.67 · 10−3 1.66 · 10−3 2.25 · 10−3 0 4.85 · 10−1

Table 4: Same as Table 3, but for the vector field generated from the stream function Ω2 in (23).
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Figure 4: Plot of the results from Table 4 for the vector field u = (γ, δ, 0)T generated from the stream function
Ω2 in (23). Note the log vs. log scale on the plots.

5 Concluding remarks

We have presented a new RBF method for fitting divergence-free vector fields defined on some surface imbed-
ded in R

3. The method allows for scattered data locations (i.e. no grids or meshes), does not suffer from
any coordinate singularities (e.g., pole singularities in the case of the sphere), results in a positive definite
interpolation matrix (i.e. it is well-posed), and preserves the divergence-free nature of the field. For the case
of the sphere, numerical results indicate that the method far out performs more traditional RBF methods.

We conclude by noting that, while we have focused primarily on interpolation, it is sometimes more
desirable when fitting “real-world” data to use approximation, such as least-squares fitting. In this case, an
approximant is constructed from fewer linear combinations of radial kernels than available data (cf. [16, pp.
61–65]). The divergence-free RBF method caries over to this more general situation and still results in an
approximant that is divergence-free.
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Example Vector Field 3, u = (γ, δ, 0)T

Relative `∞ Error, γ Relative `∞ Error, δ `∞ Error, ∇ · u
N

√
N Div. Free Std. Div. Free Std. Div. Free Std.

G
A

K
er

n
el

529 23 2.95 · 10−1 1.71 · 10−1 2.34 · 10−1 5.39 · 10−1 0 4.63 · 101

1024 32 1.31 · 10−2 4.73 · 10−2 1.21 · 10−2 1.08 · 10−1 0 2.02 · 101

1521 39 2.04 · 10−3 1.82 · 10−2 1.93 · 10−3 1.89 · 10−2 0 8.23 · 100

2025 45 3.70 · 10−4 4.59 · 10−3 2.72 · 10−4 4.32 · 10−3 0 1.21 · 100

2601 51 5.03 · 10−5 1.22 · 10−3 3.57 · 10−5 1.41 · 10−3 0 5.45 · 10−1

M
Q

K
er

n
el 529 23 2.33 · 10−1 1.69 · 10−1 2.64 · 10−1 5.25 · 10−1 0 4.55 · 101

1024 32 1.14 · 10−2 4.16 · 10−2 1.27 · 10−2 1.02 · 10−1 0 1.92 · 101

1521 39 4.00 · 10−3 1.77 · 10−2 3.31 · 10−3 2.08 · 10−2 0 7.74 · 100

2025 45 1.16 · 10−3 5.11 · 10−3 7.14 · 10−4 4.83 · 10−3 0 1.22 · 100

2601 51 7.59 · 10−5 1.98 · 10−3 8.83 · 10−5 2.15 · 10−3 0 7.90 · 10−1

M
A

ν
K

er
n
el 529 23 2.13 · 10−1 1.70 · 10−1 2.66 · 10−1 5.22 · 10−1 0 4.56 · 101

1024 32 1.46 · 10−2 3.89 · 10−2 1.66 · 10−2 1.00 · 10−1 0 1.90 · 101

1521 39 5.14 · 10−3 1.82 · 10−2 4.19 · 10−3 2.19 · 10−2 0 7.89 · 100

2025 45 1.47 · 10−3 5.56 · 10−3 8.74 · 10−4 5.17 · 10−3 0 1.35 · 100

2601 51 1.30 · 10−4 2.30 · 10−3 1.33 · 10−4 2.53 · 10−3 0 9.17 · 10−1

Table 5: Same as Table 3, but for the vector field generated from the stream function Ω3 in (24).
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Figure 5: Plot of the results from Table 5 for the vector field u = (γ, δ, 0)T generated from the stream function
Ω3 in (24). Note the log vs. linear scale on the plots.
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