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Abstract

In standard equispaced finite difference (FD) formulas, symmetries can make the
order of accuracy relatively high compared to the number of nodes in the FD stencil.
With scattered nodes, such symmetries are no longer available. The generalization of
compact FD formulas that we propose for scattered nodes and radial basis functions
(RBFs) achieves the goal of still keeping the number of stencil nodes small without
a similar reduction in accuracy. We analyze the accuracy of these new compact
RBF-FD formulas by applying them to some model problems, and study the effects
of the shape parameter that arises in, for example, the multiquadric radial function.
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1 Introduction

Radial basis functions (RBFs) are a primary tool for interpolating multidi-
mensional scattered data. In the past decade or so they have also received
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increased attention as a “mesh-free” method for numerically solving partial
differential equations (PDEs) on irregular domains by a global collocation
approach (see, for example, [1–4]). While these methods can be spectrally ac-
curate (when proper attention is paid to boundaries), they generally result in
having to solve a large, ill-conditioned, dense linear system. Some attempts
have been made to resolve this problem [3,5,6] (and the references therein).
However, stability issues have limited the use of RBFs for time dependent
problems and adapting the methods for non-linear equations has proven to be
difficult. To combat all of these problems, a “local” method has recently been
proposed that gives up spectral accuracy for a sparse, better-conditioned linear
system and more flexibility for handling non-linearities. This new “mesh-free”
method is essentially a generalization of the classical finite difference (FD)
method to scattered node layouts and appears to have been investigated in-
dependently by Shu et al. [7,8], Tolstykh et al. [9], Cecil et al. [10], and the
present authors [11].

In its most general form, the FD method consists of approximating some
derivative of a function u at a given point based on a linear combination of
the value of u at some surrounding nodes. In the classical 1-D case, u is given
at n equispaced nodes, {xi}n

i=1, and the kth derivative of u, at say x = xj

(1 ≤ j ≤ n), is approximated by the FD formula

dku

dxk

∣∣∣∣∣
x=xj

= u(k)(xj) ≈
n∑

i=1

ckj,iu(xi) , (1)

where ckj,i are called the FD weights and are usually computed using polyno-
mial interpolation [12,13]. These 1-D formulas can be combined to create FD
formulas for partial derivatives in two and higher dimensions. This strategy,
however, requires that the nodes of the stencils are situated on some kind of
structured grid (or collection of structured grids), which severely limits the
geometric flexibility of the FD method.

One obvious approach for bypassing this problem is to instead allow the nodes
of the FD stencil to be placed freely, so that a good discretization of the phys-
ical domain can be obtained. However, this approach also raises the question
of how the weights of the scattered node FD formulas should be computed.
Abgrall [14] and Schönauer and Adolph [15], for example, propose extend-
ing the classical polynomial interpolation technique. This idea, however, has
not become widely used, partly because it leads to several ambiguities about
how to generate the FD formulas. For example, what mixed terms should be
included in the multivariate polynomial interpolant to the nodes, and how
should a set of nodes that leads to a singular polynomial interpolation prob-
lem be handled (polynomial interpolation in > 1-D is not well-posed [16]). All
of these ambiguities can be resolved if RBF interpolation is instead used to
generate the weights in the FD formula [7,9–11].
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An RBF interpolant is formed by taking a linear combination of translates
of a single univariate basis function φ(r) that is radially symmetric about
its center. Thus, no decisions need to be made about what mixed terms to
include in the interpolant. Moreover, for the appropriate choice of φ(r), the
RBF interpolation method is well-posed in all dimensions. The following are
some other properties that make RBF interpolants an attractive choice:

• Since the only geometric property used by an RBF interpolant is the pair-
wise distances between points, higher dimensions do not increase the coding
complexity associated with computing the interpolants.

• RBF interpolants can be very accurate at approximating derivatives [17,18].
• Certain types of radial functions φ(r) feature a “shape” parameter that

allows them to vary from being nearly flat to sharply peaked. Recently it
has been shown [19–22] that, under some mild restrictions on φ(r), the
RBF interpolants converge to polynomial interpolants in the limit of φ(r)
becoming entirely flat. Thus, all classical FD formulas can be recovered by
the limiting RBF interpolant (when the nodes are arranged accordingly).

We refer to this method of using RBF interpolants to generate the weights of
a FD formula as the RBF-FD method.

One of the issues with using scattered node FD formulas (whether the weights
are generated by polynomials or RBFs) is that symmetries cannot be exploited
to increase the accuracy of the formulas. Thus, the number of nodes in the
stencils tend to be relatively large compared to the resulting accuracy. To
circumvent this problem, we propose a generalization of a method introduced
by Collatz [23] under the name Mehrstellenverfahren, and later developed into
compact FD formulas by Lele [24]. The basic idea behind this method is to keep
the stencil size fixed and to also include in the FD formula a linear combination
of derivatives of u at surrounding nodes. For example, the accuracy of the 1-D
formula (1) can be increased with a formula of the form

dku

dxk

∣∣∣∣∣
x=xj

= u(k)(xj) ≈
n∑

i=1

i6=j

c̃kj,iu
(k)(xi) +

n∑

i=1

ckj,iu(xi) . (2)

In the case of 1-D and equispaced nodes, the weights c̃kj,i and ckj,i can be con-
veniently derived using Padé approximants [13]. For scattered nodes, and for
RBFs, this Padé approach is no longer available. Instead, we propose a method
based on Hermite RBF interpolation. We refer to our proposed compact FD
method as the RBF-HFD method.

The remainder of the paper is structured as follows: In Section 2, we review
some properties of the standard and Hermite RBF interpolation methods and
introduce some closed form expressions for the cardinal RBF interpolants,
which prove valuable for deriving the RBF-FD and HFD formulas in Section
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3. In Section 4, we study the effect of the shape parameter on the RBF-FD and
HFD formulas. In particular, we are interested in how the formulas behave in
the limit of flat radial functions. In Section 5, we illustrate the effectiveness
of the RBF-HFD formulas for solving some elliptic PDEs and discuss various
implementation details. We conclude with some remarks in Section 6.

2 RBF interpolation

Since the RBF-FD formulas are obtained from RBF interpolants, we review
in this section some properties of RBF interpolation. We discuss standard
RBF interpolation in which only function values are specified. This forms the
background for Hermite RBF interpolation, in which function and derivative
values are specified.

2.1 Standard RBF interpolation

Given a set of distinct nodes xi ∈ R
d, i = 1, . . . , n, and corresponding (scalar)

function values u(xi), i = 1, . . . , n, the standard RBF interpolation problem
is to find an interpolant of the form

s(x) =
n∑

i=1

λi φ(‖x− xi‖) +
m∑

j=1

βjpj(x), (3)

where φ(r) is some radial function, ‖ · ‖ is the standard Euclidean norm,
and {pk(x)}m

k=1 is a basis for the space of all d-variate polynomials that have
degree ≤ Q. The expansion coefficients λi and βj are determined by enforcing
the conditions

s(xi) = u(xi), i = 1, . . . , n, and (4)
n∑

i=1

λipj(xi) = 0, j = 1, . . . , m. (5)

The degree of the augmented polynomial in (3) depends on φ(r) and its inclu-
sion may be necessary to guarantee a well-posed interpolation problem [25].
Table 1 lists a few of the many available choices for φ(r).

In this study, we are primarily interested in the infinitely smooth radial func-
tions since, by suitable choices of the shape parameter ε, they can provide
more accurate interpolants than the piecewise smooth case [26,27]. We post-
pone the discussion on the effect of ε until Section 4. For now, we assume it
is fixed at some non-zero value.
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Type of basis function φ(r)

Piecewise smooth RBFs

Generalized Duchon spline r2k log r, k ∈ N, or

r2ν , ν > 0 and ν 6∈ N

Wendland (1 − r)k+p(r), p a polynomial, k ∈ N

Infinitely smooth RBFs

Gaussian (GA) e−(εr)2

Generalized multiquadric (1 + (εr)2)ν/2, ν 6= 0 and ν 6∈ 2N

• Multiquadric (MQ) (1 + (εr)2)1/2

• Inverse multiquadric (IMQ) (1 + (εr)2)−1/2

• Inverse quadratic (IQ) (1 + (εr)2)−1

Table 1
Some commonly used radial basis functions. Note: in all cases, ε > 0.

Although (3) is well-posed without any polynomial augmentation for the GA,
MQ, IMQ, and IQ RBFs in Table 1, we set Q = 0 (i.e. m = 1) in order
to impose the condition that the RBF-FD formulas are exact for constants.
Thus, the standard RBF interpolant that we consider has the form

s(x) =
n∑

i=1

λi φ(‖x− xi‖) + β , (6)

Imposing the conditions (4) and (5) leads to the symmetric, block linear system
of equations [

Φ e
eT 0

]

︸ ︷︷ ︸
A

[
λ

β

]
=

[
u
0

]
, (7)

where Φi,j = φ(‖xi − xj‖), i, j = 1, . . . , n, and ei = 1, i = 1, . . . , n.

When deriving RBF-FD formulas in Section 3, we make use of the Lagrange
form the RBF interpolant (6):

s(x) =
n∑

i=1

ψi(x)u(xi) , (8)

where ψi(x) are of the form (6) and satisfy the cardinal conditions

ψi(xk) =





1 if k = i

0 if k 6= i
, k = 1, . . . , n . (9)

There turns out to be a nice closed-form expression for ψi(x) that first ap-
peared in [20]. Denote by Ak(x), k = 1, . . . , n, the matrix A in (7) with the
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Fig. 1. Example of a scattered node Hermite interpolation problem.

kth row replaced by the vector

B(x) =
[
φ(‖x− x1‖) φ(‖x− x2‖) · · · φ(‖x− xn‖) 1

]
. (10)

Note that with this notation A = Ak(xk).

Theorem 1 ([20]) The cardinal RBF interpolant of the form (6) that satis-
fies (9) is given by

ψi(x) =
det (Ai(x))

det (A)
. (11)

While (11) is not recommended for computational work, it is useful for ana-
lytically studying the effects of the shape parameter ε in Section 4.

2.2 Hermite RBF interpolation

Let L be some linear differential operator (e.g., the Laplacian, L = ∆) and let
σ be a vector containing some combination ofm ≤ n distinct numbers from the
set {1, . . . , n}. Then the Hermite interpolation problem we consider is to find a
function s(x) that interpolates u(x) at the distinct nodes xi, i = 1, . . . , n, and
interpolates Lu(x) at xσj

, j = 1, . . . , m. To clarify the notation, suppose u is
given at the nodes x1, x2, . . . , x10 in Figure 1 and Lu is given at the nodes with
double circles (i.e. x2, x4, x5, x6, x10). Then using the notation of the problem
n = 10, m = 5, and σ = {2, 4, 5, 6, 10}.

Solutions to this Hermite problem with RBFs have been around since Hardy’s
introduction of the MQ method [28] (see also [29]). Other expositions on this
and related Hermite-type RBF problems can be found, for example, in [30–
32]. The Hermite RBF method we will use is similar to the Hermite-Birkhoff
method proposed by Wu [32]. The idea is to introduce m more unknowns
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to (6) in order to satisfy the m new interpolation conditions. Formally, the
interpolant takes the form

s(x) =
n∑

i=1

λiφ(‖x− xi‖) +
m∑

j=1

αjL2φ(‖x− xσj
‖) + β , (12)

where

L2φ(‖x− xj‖) := Lφ(‖x− y‖)
∣∣∣
y=xj

,

i.e. L acts on φ as a function of the second variable y. For the remainder of
this article we will also use the notation

Lφ(‖xj − y‖) = L1φ(‖xj − y‖) := Lφ(‖x− y‖)
∣∣∣
x=xj

,

i.e. if L or L1 act on φ, then the operator applies to the first variable. For
example, if d = 1 and L = d

dx
then L2φ(‖x − xj‖) = −L1φ(‖x − xj‖) =

−Lφ(‖x− xj‖).

Imposing the interpolation conditions (4), (5), and

Ls(xσj
) = Lu(xσj

), j = 1, . . . , m, (13)

leads to the following block linear system of equations




Φ ΦL2 e
ΦL1 ΦL1L2 0
eT 0T 0




︸ ︷︷ ︸
AH



λ

α

β


 =




u
Lu
0


 , (14)

where Φ and e are given by (7) and

ΦL2

i,j = L2φ(‖xi − xσj
‖) , i = 1, . . . , n, j = 1, . . . , m,

ΦL1

i,j = L1φ(‖xσi
− xj‖) , i = 1, . . . , m, j = 1, . . . , n,

ΦL1L2

i,j = L1[L2φ(‖xσi
− xσj

‖)] , i = 1, . . . , m, j = 1, . . . , m,

Note that by using L1 and L2 in defining (14), we have the relationship ΦL1 =
(ΦL2)T , making AH symmetric. For the appropriate choice of φ, AH is also
guaranteed to be non-singular [31].

We can also express (12) in the following Lagrange form:

s(x) =
n∑

i=1

ψi(x)u(xi) +
m∑

j=1

ψ̃σj
(x)Lu(xσj

) , (15)
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where ψi(x) and ψ̃σj
(x) are of the form (12) and satisfy the cardinal conditions

ψi(xk) =





1 if k = i

0 if k 6= i
, k = 1, . . . , n , (16)

Lψi(xσk
) = 0 , k = 1, . . . , m , (17)

and

ψ̃σj
(xk) = 0 , k = 1, . . . , n , (18)

Lψ̃σj
(xσk

) =





1 if k = j

0 if k 6= j
, k = 1, . . . , m . (19)

Like the standard RBF interpolation case, there turns out to be a nice closed-
form expression for ψi(x) and ψ̃σj

(x). Denote AH
k (x), k = 1, . . . , n+m, as the

matrix AH in (14) with the kth row replaced by the vector

BH(x) =
[
B(x) L2φ(‖x− xσ1

‖) · · · L2φ(‖x− xσm
‖) 1

]
, (20)

where B(x) is given by (10), but without the last entry.

Theorem 2 Let ψi(x) and ψ̃σj
(x) be of the form (12) and satisfy the condi-

tions (16),(17) and (18),(19). Then, provided the matrix AH in (14) is non-
singular,

ψi(x) =
det

(
AH

i (x)
)

det (AH)
, (21)

and

ψ̃σj
(x) =

det
(
AH

n+j(x)
)

det (AH)
, (22)

PROOF. The result follows by using the same inspection argument given
in [20] for proving Theorem 1.

We postpone the discussion of the consequences of this formula as it relates
to the shape parameter ε until Section 4.

3 RBF-FD Formulation

In this section we describe how the RBF-FD and HFD formulas are generated.
With out loss of generality, we consider a stencil consisting of n (scattered)
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nodes x1, . . . , xn and are interested in approximating Lu(x1), for some linear
differential operator L.

3.1 RBF-FD method

The goal is to find weights ci such that,

Lu(x1) ≈
n∑

i=1

ciu(xi) . (23)

For example, given the 1-D scattered node stencil

��
��
x4 ��

��
x3 ��

��
x1 ��

��
x2 ��

��
x5

,

we look for an approximation of the form

Lu(x1) ≈
5∑

i=1

ciu(xi) ,

or in computational molecule form

Lu(x1) ≈ c4 c3 c1 c2 c5 u .

(24)

Using the Lagrange form of the standard RBF interpolant (8) to approximate
u(x) and then applying L gives

Lu(x1) ≈ Ls(x1) =
n∑

i=1

Lψi(x1)u(xi) .

Thus, the weights in RBF-FD formula (23) are formally given by

ci = Lψi(x1) .

In practice, the weights are computed by solving the linear system

A[c|µ]T = (LB(x1))
T , (25)

where A is the matrix in (7), B(x) is the row vector (10), and µ is a (scalar)
dummy value related to the constant β in (6). Note that the constraint (5)
enforces the condition

n∑

i=1

ci = 0 ,
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i.e. the RBF-FD stencil is exact for all constants.

3.2 RBF-HFD method

The goal now is to increase the accuracy of the approximation (23) without
increasing the stencil size by using nodes where u and Lu are given exactly.
Let σ be a vector containing some combination of m < n distinct numbers
from the set {2, . . . , n}, then we seek to find weights ci and c̃σj

such that

Lu(x1) ≈
m∑

j=1

c̃σj
Lu(xσj

) +
n∑

i=1

ciu(xi) . (26)

For example, suppose we wish to increase the accuracy of the 1-D example
(24) from the previous section by including values of Lu(x3) and Lu(x5), i.e.
using the stencil

��
��
x4 ��

��
�

��
x3 ��

��
x1 ��

��
x2 ��

��
�

��
x5 ,

where a single circle indicates that the value of u is used at that node, and
a double circle indicates that the values of u and Lu are used. Then we let
m = 2, σ = {3, 5}, and look for an approximation of the form

Lu(x1) ≈ c̃3 c̃5 Lu+

c4 c3 c1 c2 c5 u .

The Hermite interpolation example in Figure 1 can alternatively be viewed as
an example of a 2-D compact scattered node stencil with n = 10, m = 5 and
σ = {2, 4, 5, 6, 10}.

Using the Lagrange form of the Hermite RBF interpolant (15) to approximate
u(x) and then applying L gives

Lu(x1) ≈ Ls(x1) =
n∑

i=1

Lψi(x1)u(xi) +
m∑

j=1

Lψ̃σj
(x1)Lu(xσj

) .

Thus, the weights in the RBF-HFD formula (26) are formally given by

ci = Lψi(x1) and c̃σj
= Lψ̃σj

(x1) .

In practice, the weights are computed by solving the linear system

AH[c|c̃|µ]T = (LBH(x1))
T , (27)
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where AH is the matrix in (14), BH(x) is the row vector (20), and µ is a dummy
(scalar) value related to the constant β in (12). Like the standard RBF-FD
formula, the constraint (5) enforces that (26) is exact for all constants.

Note that the above formulation for computing compact FD formulas differs
from the standard polynomial-based formulation. For polynomials, the point
at which we are constructing the approximation about does not matter; the
only thing that does matter is that the formulas are exact for as high a degree
polynomial as possible [13].

4 Observations on the effect of the shape parameter ε

In this section, we make some observations with regard to ε on the RBF-
FD and HFD formulas. We are primarily interested in studying the resulting
formulas as we let ε → 0.

4.1 Some theoretical results on the ε → 0 limit

For nodes in 1-D, it was first shown in [19] that, under some mild restrictions
on the infinitely smooth radial functions φ(r) (e.g. MQ, see Table 1), the
standard RBF interpolant converges to the Lagrange interpolating polynomial
as ε → 0. This result means that all “classical”polynomial-based FD stencils
are reproduced by the standard RBF-FD stencils (with the appropriate choice
of φ(r)) in the limit of ε → 0. A few examples of this result are given in the
next section.

For nodes in two and higher dimensions, the situation is complicated by the
fact that multivariate polynomial interpolation is not well-posed [16]. While
the standard RBF interpolant typically converges to a low degree multivariate
polynomial as ε → 0, there are circumstances where the interpolant may
instead diverge; see [20–22,33,34] for more details. The authors are unaware of
any similar study of limiting (ε→ 0) Hermite RBF interpolants. However, we
expect similar results to those of the standard RBF interpolant. For example,
the following theorem indicates that polynomial type results may be expected
in the ε→ 0 limit.

Theorem 3 Consider the Hermite RBF interpolant (12). If limε→0 s(x) ex-
ists, it will be a (multivariate) finite degree polynomial in x.

PROOF. Consider the Lagrange form of s(x) (15). Note that we can expand
φ(‖x− xi‖) and L2φ(‖x− xi‖) in powers of ε2 so that the coefficients in front
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of these powers will be some polynomial in x. The same will, therefore, hold
for the determinant in the numerator of (21) and (22). Thus, the ratios in (21)
and (22) will be of the respective forms

ψi(x) =
ε2pi{poly in x} + ε2pi+2{poly in x} + · · ·
ε2qi{constant} + ε2qi+2{constant} + · · ·

and

ψ̃σj
(x) =

ε2p̃j{poly in x} + ε2p̃j+2{poly in x} + · · ·
ε2q̃j{constant} + ε2q̃j+2{constant} + · · ·

,

where pi, qi, p̃j , and q̃j are positive integers. Since ψi(xi) = 1 and Lψ̃σj
(xσj

) =
1, it is impossible to have pi > qi and p̃j > q̃j . If pi < qi or p̃j < q̃j , the limit
fails to exist. Thus, when pi = qi and p̃j = q̃j, s(x) is some polynomial in x.

Like the polynomial result for the standard RBF interpolant, we can use The-
orem 3 to conclude that when the underlying Hermite interpolant exists, the
RBF-HFD formulas will be exact for some polynomials. In the next two sec-
tions, we give a few examples that demonstrate this result.

4.2 A few examples with closed-form solutions for the ε → 0 limit

We first present two examples based on an n = 3 node, equispaced 1-D stencil
with the nodes numbered

��
��
x3 ��

��
x1 ��

��
x2

,

where {x1, x2, x3} = {0, h,−h}. Since the nodes are in 1-D, we drop the un-
derline on the x-values. In all cases, we use a general radial function with an
expansion

φ(r) = a0 + a1(εr)
2 + a2(εr)

4 + a3(εr)
6 · · · ,

and consider the resulting RBF-FD formulas (23) and RBF-HFD formulas
(26) as ε→ 0. We make use of the cardinal interpolants from Theorems 1 and
2.

Example 1 Approximate u′(x1), i.e let L =
d

dx

RBF-FD formula: The determinant in the denominators of the cardinal inter-
polants (11) is given by

det(A) = 2bh6F (a)ε6 +O(ε8) ,
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while the determinants in the numerators are given by

det(A1(x)) = −2bh4(x− h)(x+ h)F (a)ε6 +O(ε8),

det(A2(x)) = bh4x(x+ h)F (a)ε6 +O(ε8),

det(A3(x)) = bh4x(x− h)F (a)ε6 +O(ε8) ,

where b = 24 and

F (a) = a1a2 . (28)

As expected from [19], provided a1a2 6= 0, ψi(x), i = 1, 2, 3, converge to the
standard cardinal interpolating polynomials in the limit as ε → 0. Thus, the
classical, centered, second order FD formula for u′(x1) is recovered in the ε → 0
limit.

RBF-HFD formula: Using the notation from Section 2.2 and 3.2, we let m = 2
and σ = {2, 3}, i.e.

��
��
�

��
x3 ��

��
x1 ��

��
�

��
x2

.

The determinant in the denominators of the cardinal interpolants (21) and
(22) is given by

det(AH) = 4bh16F (a)ε20 +O(ε22) , (29)

while the determinants in the numerators are given by

det(AH
1 (x)) = −4bh12(x2 − h2)2F (a)ε20 +O(ε22) ,

det(AH
2 (x)) = bh12(2x− 3h)x(x+ h)2F (a)ε20 +O(ε22) ,

det(AH
3 (x)) = bh12(2x+ 3h)x(x− h)2F (a)ε20 +O(ε22) ,

det(AH
4 (x)) = bh13(x− h)x(x+ h)2F (a)ε20 +O(ε22) ,

det(AH
5 (x)) = bh13(x− h)2x(x+ h)F (a)ε20 +O(ε22) ,

where b = 7680 and

F (a) = (2a2
2 − 5a1a3)(15a2

3 − 28a2a4) . (30)

Provided (2a2
2 − 5a1a3) 6= 0 and (15a2

3 − 28a2a4) 6= 0, ψi(x), i = 1, 2, 3, and
ψ̃j(x), j = 2, 3, converge to the standard Hermite cardinal interpolating poly-
nomials as ε→ 0. The weights in the limiting RBF-HFD formula for u′(x1) are
thus the same as the classical, centered, fourth order compact FD scheme [23,
p. 538]

u′(x1) ≈ −1
4

−1
4 u′+ −3

4 0 3
4

u

h
.2

Example 2 Approximate u′′(x1), i.e let L =
d2

dx2

13



RBF-FD formula: The cardinal interpolants for this example are the same as
the ones from Example 1. Thus again, the classical, centered, second order
accurate FD scheme for u′′(x1) is recovered in the ε→ 0 limit.

RBF-HFD formula: We again let m = 2 and σ = {2, 3}. The determinant in
denominators of the cardinal interpolants (21) and (22) is given by

det(AH) = 60bh12F (a)ε20 +O(ε22) , (31)

while the determinants in the numerators are given by

det(AH
1 (x)) = −12bh8(x− h)(x+ h)(x2 − 5h2)F (a)ε20 +O(ε22) ,

det(AH
2 (x)) = 6bh8x(x+ h)(x2 − hx− 5h2)F (a)ε20 +O(ε22) ,

det(AH
3 (x)) = 6bh8(x− h)x(x2 + hx− 5h2)F (a)ε20 +O(ε22) ,

det(AH
4 (x)) = bh10(x− h)x(x+ h)(3x+ 5h)F (a)ε20 +O(ε22) ,

det(AH
5 (x)) = bh10(3x− 5h)(x− h)x(x+ h)F (a)ε20 +O(ε22) ,

where b = 115200 and F (a) is given by (30). Provided again F (a) 6≡ 0, we
recover the standard cardinal Hermite interpolating polynomials in the limit
of ε→ 0. The weights in the limiting RBF-HFD scheme for u′′(x1) are

u′′(x1) ≈− 1
10

− 1
10 u

′′+ 6
5

−12
5

6
5

u

h2
.

This is identical to the classical, centered, fourth order compact FD scheme
of Collatz [23, p. 538]. 2

The last example illustrates how symmetries in the stencil can make the order
of accuracy relatively high compared to the number of nodes. For the three
node stencil, the weights in the classical FD formula come from the second
degree interpolating polynomial. This may lead us to conclude that, after
differentiating twice, the order of accuracy of the formula is only one (i.e. it
is exact for all polynomials of degree ≤ 2). However, due to the symmetry
around x1, the formula is in fact second order accurate (i.e. it is exact for all
polynomials of degree ≤ 3). Similarly, for the classical compact three node
stencil, we gain one order of accuracy from what is expected (fourth instead
of third). In the next example, we study the limiting (ε → 0) RBF-FD and
HFD formulas for the “scattered” node stencil

��
��
�

��
x3 ��

��
x1 ��

��
�

��
x2

,

where {x1, x2, x3} = {0, 3h/2,−h}, and show how the accuracy is reduced.

Example 3 Approximate u′′(x1) using the above stencil.

14



RBF-FD formula: Interpolating to only the function values in the above stencil
yields the following results for the denominators and numerators of (11):

det(A) = 15bh6F (a)ε6 +O(ε8),

det(A1(x)) = 5bh4(2x− 3h)(x+ h)F (a)ε6 +O(ε8),

det(A2(x)) = 4bh4x(x+ h)F (a)ε6 +O(ε8),

det(A3(x)) = 3bh4x(2x− 3h)F (a)ε6 +O(ε8) ,

where b = 45/4 and F (a) is given by (28). Again, provided F (a) 6≡ 0, the
cardinal RBF interpolants converge to the standard Lagrange interpolating
polynomials as ε → 0. The limiting RBF-FD formula is given by

u′′(x1) ≈ 4
5

−4
3

8
15

u

h2
.

This FD scheme is exact for all polynomials of degree ≤ 2, leading us to
conclude that it is only first order accurate.

RBF-HFD formula: We again let m = 2 and σ = {2, 3}. The determinant in
the denominators of the cardinal interpolants (21) and (22) is given by

det(AH) = −32768bh12F (a)ε20 +O(ε22) , (32)

while the determinants in the numerators are given by

det(AH
1 (x)) = −4650bh8(2x− 3h)(x+ h)(4x2 − 2hx− 31h2)F (a)ε20 +O(ε22) ,

det(AH
2 (x)) = 14880bh8x(x+ h)(x2 − 2hx+ 7h2)F (a)ε20 +O(ε22) ,

det(AH
3 (x)) = 2790bh8(2x− 3h)x(4x2 + 2hx− 33h2)F (a)ε20 +O(ε22) ,

det(AH
4 (x)) = −930bh10(2x− 3h)x(x+ h)(7x+ 12h)F (a)ε20 +O(ε22) ,

det(AH
5 (x)) = −465bh10(2x− 3h)x(x+ h)(16x− 39h)F (a)ε20 +O(ε22) ,

where b = 3375/16 and F (a) is given by (30). Provided again F (a) 6≡ 0, we
recover the standard cardinal Hermite interpolating polynomials in the limit
of ε→ 0. The weights in the limiting RBF-HFD scheme for u′′(x1) are

u′′(x1) ≈ −3
155

−22
155 u′′+ 144

155
−48
31

96
155

u

h2
.

This FD formula is exact for all polynomials of degree ≤ 4, leading us to
conclude that it is third order accurate. If an application requires that a three
node stencil is used, then to increase the accuracy it is imperative that we use
a compact stencil. 2

While all the examples above involve centered FD formulas, we note that
a similar recovery of the classical, one-sided formulas by the RBF-FD and

15



HFD formulas occurs. This is because of the convergence of the regular and
Hermite RBF interpolants to the standard Lagrange and Hermite polynomial
interpolants, respectively, in the ε → 0 limit.

From the examples above, we see that for each of the RBF-FD formulations
we obtain a set of requirements that the Taylor coefficients of the radial func-
tion must satisfy in order for the limiting interpolant to exist. We note that
each of the infinitely smooth functions in Table 1 satisfies the requirements
from each example. For larger stencil sizes (i.e. more nodes), the requirements
that the Taylor coefficients must satisfy become more and more intricate. For
the standard method in 1-D, the full set of requirements for any number of
nodes was proven in [19] and extended to >1-D in [21] (in both cases, how-
ever, a slightly different formulation of the interpolant is considered). The full
set of requirements for convergence in the ε → 0 limit of the Hermite RBF
interpolation method are still unknown. However, experiments suggest they
are similar to the standard case.

The results for the RBF-HFD formulas in the above examples required quite
extensive symbolic manipulation with Mathematica. Extending these results
to more nodes is, at the present time, intractable. We can, however, nu-
merically study the ε → 0 formulas for larger stencils with the Contour-
Padé algorithm [33]. Although originally developed for the RBF interpolation
problem, this algorithm can be easily extended for computing the RBF-FD
and HFD weights.

4.3 Numerical results using the Contour-Padé algorithm

In the first couple of examples, we further explore the connection between
limiting (ε → 0) RBF-HFD schemes and the classical compact FD schemes.
We follow this with some results based on scattered node stencils. The results
of each of the examples in this section are based on the MQ and GA radial
functions.

Example 4 Approximate u′(x1) and u′′(x1) using the five-node equispaced
stencil:

��
��
x5 ��

��
�

��
x3 ��

��
x1 ��

��
�

��
x2 ��

��
x4 .

The parameters for this example are n = 5, m = 2, and σ = {2, 3}. Computa-
tions with the Contour-Padé algorithm suggest that the RBF-HFD formulas
in the ε → 0 limit converges to the standard, sixth order accurate compact

16



FD formulas [23, p. 538]:

u′(x1) ≈ −1
3

−1
3 u′+ −1

36
−7
9 0 7

9
1
36

u

h

and

u′′(x1) ≈ 2
−11

2
−11 u

′′+ 3
44

48
44

102
−44

48
44

3
44

u

h2
.

2

Example 5 Approximate ∆u(x1) using the nine-node equispaced stencil:

��
��
x8 ��

��
�

��
x4 ��

��
x7

��
��
�

��
x5 ��

��
x1

�
�
�

@
@

@

@
@
@

�
�

�

��
��
�

��
x3 .

��
��
x9 ��

��
�

��
x2 ��

��
x6

The parameters for this example are n = 9, m = 4, and σ = {2, 3, 4, 5}.
Computations with the Contour-Padé algorithm suggest that the RBF-HFD
formula in the ε → 0 limit converges to the classical, fourth order accurate
compact FD formula [23, p. 542]:

∆u(x1) ≈

−1
8

−1
8

−1
8 ∆u+

−1
8

1
4 1 1

4

1 −5
�

�
@

@

@
@

�
�

1
u

h2
. 2

1
4 1 1

4

The results for u′′(x1) and ∆u(x1) in the previous two examples illustrate two
important observations. First, not including the derivative information results
in FD formulas that are only fourth and second order accurate, respectively.
Second, unlike the compact schemes, these formulas would also not be di-
agonally dominant, as we would want from a discrete approximation of the
Laplacian. In Section 5, we give evidence that for scattered nodes it is also
more likely to find a diagonally dominant RBF-FD formula when we make it
compact.
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m

0 1 2 3 4 5 6 7 8 9 10

n

1 0 0 1 1 1 2 2 2 2 3 3
2 0 1 1 1 2 2 2 2 3 3 3
3 1 1 1 2 2 2 2 3 3 3 3
4 1 1 2 2 2 2 3 3 3 3 3
5 1 2 2 2 2 3 3 3 3 3 4
6 2 2 2 2 3 3 3 3 3 4 4
7 2 2 2 3 3 3 3 3 4 4 4
8 2 2 3 3 3 3 3 4 4 4 4
9 2 3 3 3 3 3 4 4 4 4 4
10 3 3 3 3 3 4 4 4 4 4 4
11 3 3 3 3 4 4 4 4 4 4 5

Table 2
Numerical results for the maximum degree 2-D polynomial the limiting (ε → 0)
RBF-HFD formulas for ∆u are exact for using a scattered node stencil. Here n and
m are the the number of values of u and ∆u used in the formulas, respectively.

We now focus on the case of a scattered node stencil (cf. Figure 1). As an
experiment, we considered 11 scattered nodes in 2-D and computed the lim-
iting (ε → 0) RBF-HFD formulas for approximating ∆u using n values of u
and m values of ∆u such that 1 ≤ n ≤ 11 and 0 ≤ m ≤ 10. We then tested
the resulting formulas on all polynomials in the standard basis for polyno-
mials of degree ≤ 6. Table 2 displays the maximum degree polynomial the
formulas were observed to become exact for. If we let Q equal the maximum
degree polynomial, then the results from the table seem to indicate that when
1
2
(Q + 2)(Q + 1) ≤ n + m < 1

2
(Q + 3)(Q + 2), the limiting RBF-HFD for-

mula is exact for all polynomials of degree Q. These are the same numbers
we would expect if using regular (2-D) polynomial interpolation (with the
standard basis) to generate the FD formulas (assuming these polynomial in-
terpolants exist).

5 Application and implementation: elliptic PDEs

In all the numerical experiments that follow, we use the MQ radial function
because of its popularity in applications. All of the model problems involve the
Laplace linear differential operator, i.e. L = ∆. We note that the d-dimensional
Laplacian and biharmonic operators applied to any radially symmetric func-
tion φ(r) are given by

∆φ = (d− 1)
1

r

dφ

dr
+
d2φ

dr2
,

∆2φ =
d2 − 4d+ 3

r2

[
d2φ

dr2
− 1

r

dφ

dr

]
+ 2(d− 1)

1

r

d3φ

dr3
+
d4φ

dr4
.
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Also, L1φ(‖x− y‖) = L2φ(‖x− y‖) for the Laplacian.

5.1 Poisson equation on the unit square: uniform discretization

In this first example, we illustrate the convergence rate of the RBF-FD method
for the standard and compact formulas as the grid is refined. To do this, we
consider the model problem

∆u = f in Ω = {(x, y) | 0 ≤ x, y ≤ 1} , u = g on ∂Ω , (33)

where f and g are computed from the known solution

u(x) = u(x, y) = e−(x−1/4)2−(y−1/2)2 cos(2πy) sin(πx) .

The solution is approximated on an equispaced grid of spacing h using both
an RBF-FD formula with n = 5 nodes and an RBF-HFD formula with n = 9
and m = 4 nodes, i.e. using the respective stencils

��
��
x4

��
��
x5 ��

��
x1 ��

��
x3 and

��
��
x2

��
��
x8 ��

��
�

��
x4 ��

��
x7

��
��
�

��
x5 ��

��
x1

�
�
�

@
@

@

@
@
@

�
�

�

��
��
�

��
x3 .

��
��
x9 ��

��
�

��
x2 ��

��
x6

(34)

In this case, it is only necessary to compute the standard and compact formulas
once for these stencils and apply them all over the discretization. From the
results of Section 4.3, we expect the RBF-FD and HFD formulas for these
stencils to converge in the ε → 0 limit to the classical, second order accurate
and compact, fourth order accurate FD formulas (FD2 and compact FD4),
respectively.

Figure 2 displays the max norm error of the RBF-FD and HFD solutions
for different values of ε and h. Moving from top to bottom in each of the
plots, the error curves correspond to the solutions with grid spacing h =
0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002. We can see from the figure that for each
h, the solution with the minimum error occurs at a non-zero value of ε. Fur-
thermore, for each ε the error appears to be decreasing at a fairly constant rate
as h decreases. In Table 3 and 4 we display the max norm error for different
values of ε and h and the observed rate of convergence for the RBF-FD and
HFD formulas. We can see from the table that even for non-zero values of ε,
both of the formulas demonstrate the same convergence rate as the standard
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Fig. 2. The error as a function of ε and h for the solution of (33) using the RBF-FD
and HFD formulas based on the stencils in (34). Each error curve corresponds to a
different value of h with varying ε.

FD2 and compact FD4 formulas (i.e. the results for ε = 0). However, for larger
values of ε, the results indicate that h is required to be much smaller before
the standard rates of convergence are observed.

We conclude this example by noting that for the full range of ε considered
here, the weights in the RBF-FD and HFD formulas satisfied the diagonal
dominance condition

c1 < 0, cj > 0, j = 2, . . . , n, and
n∑

j=1

cj = 0 . (35)

Thus, the resulting symmetric, banded linear system for determining the ap-
proximate solution (for each ε and h) was guaranteed to be negative definite.
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To solve these systems we used a standard banded Gaussian elimination solver.
However, any iterative method applicable to the the classical FD2 and com-
pact FD4 methods (e.g. multigrid) could also have been used.

h–grid spacing
2.0 · 10−1 1.0 · 10−1 5.0 · 10−2 2.0 · 10−2 1.0 · 10−2 5.0 · 10−3 2.0 · 10−3

ε = 0.0 1.3 · 10−1 3.8 · 10−2 9.5 · 10−3 1.5 · 10−3 3.8 · 10−4 9.5 · 10−5 1.5 · 10−5

rate — 1.8 2.0 2.0 2.0 2.0 2.0

ε = 0.25 1.3 · 10−1 3.8 · 10−2 9.3 · 10−3 1.5 · 10−3 3.7 · 10−4 9.2 · 10−5 1.4 · 10−5

rate — 1.8 2.0 2.0 2.0 2.0 2.0

ε = 1.0 8.7 · 10−2 2.5 · 10−2 6.0 · 10−3 9.6 · 10−4 2.4 · 10−4 6.0 · 10−5 9.2 · 10−6

rate — 1.8 2.0 2.0 2.0 2.0 2.1

ε = 1.6 2.7 · 10−2 4.3 · 10−3 1.1 · 10−3 1.8 · 10−4 4.6 · 10−5 1.2 · 10−5 1.9 · 10−6

rate — 2.6 1.9 2.0 2.0 2.0 2.0

ε = 2.0 2.1 · 10−2 1.3 · 10−2 4.1 · 10−3 7.0 · 10−4 1.8 · 10−4 4.4 · 10−5 7.5 · 10−6

rate — 0.7 1.7 1.9 2.0 2.0 1.9
Table 3
Max norm error and observed convergence rate for the approximate solution of (33)
using the n = 5 node RBF-FD formula.

h–grid spacing
2.0 · 10−1 1.0 · 10−1 5.0 · 10−2 2.0 · 10−2 1.0 · 10−2 5.0 · 10−3 2.0 · 10−3

ε = 0.0 6.6 · 10−3 4.8 · 10−4 2.9 · 10−5 7.5 · 10−7 4.7 · 10−8 2.9 · 10−9 9.5 · 10−11

rate — 3.8 4.0 4.0 4.0 4.0 3.7

ε = 0.25 5.9 · 10−3 4.3 · 10−4 2.6 · 10−5 6.7 · 10−7 4.2 · 10−8 2.6 · 10−9 8.9 · 10−11

rate — 3.8 4.0 4.0 4.0 4.0 3.7

ε = 0.85 1.3 · 10−3 6.3 · 10−5 3.7 · 10−6 9.4 · 10−8 5.9 · 10−9 3.7 · 10−10 1.8 · 10−11

rate — 4.4 4.1 4.0 4.0 4.0 3.3

ε = 1.6 3.7 · 10−3 3.4 · 10−4 2.1 · 10−5 5.5 · 10−7 3.4 · 10−8 2.1 · 10−9 4.1 · 10−11

rate — 3.4 4.0 4.0 4.0 4.0 4.3

ε = 2.0 3.9 · 10−3 4.1 · 10−4 3.5 · 10−5 9.8 · 10−7 6.2 · 10−8 3.9 · 10−9 1.1 · 10−10

rate — 3.3 3.6 3.9 4.0 4.0 3.9
Table 4
Max norm error and observed convergence rate for the approximate solution of (33)
using the n = 9, m = 4 node RBF-HFD formula.

5.2 Poisson equation on the unit disk: unstructured discretization

We consider the model problem

∆u = f in Ω =
{
(x, y) | x2 + y2 ≤ 1

}
, u = g on ∂Ω , (36)

where f and g are computed from the known solution

u(x) = u(x, y) =
25

25 + (x− 0.2)2 + 2y2
.
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Fig. 3. (a) 200 point unstructured discretization and (b) 201 point structured dis-
cretization of the unit disk for the problem in Section 5.2.

The domain is discretized using the N = 200 points shown in Figure 3 (a).
The purpose of this example is to compare the RBF-FD and HFD methods on
an unstructured grid as ε and the number of nodes in the stencil are varied.

We begin by describing the greedy algorithm used for selecting the nodes for
each of the stencils from the larger unstructured discretization. The essential
factors used for determining when an acceptable stencil is found are that the
weights in the resulting RBF-FD or RBF-HFD formula satisfy the diagonal
dominance condition (35) and

1

h2
≤ |c1| ≤

2(n− 1)

h2
, h = max

i=1,...,n



 min
j=1,...,n

i6=j

‖xi − xj‖


 , (37)

where xi, i = 1, 2, . . . , n are the nodes in the stencil. The first condition guar-
antees the linear system for discretizing (36) is negative definite, while the
second condition is meant to balance the influence of the point the approxi-
mation is about. This latter condition would be satisfied by either the standard
FD or compact FD formulas on an equispaced grid.

The stencil selection algorithm is as follows: Let N be the number of points
in the unstructured discretization of the domain Ω and let NI be the number
of points at which to compute all the n-node RBF-FD or HFD formulas. We
denote each point as xi,1, i = 1, . . . , N , and the nodes that make up the stencil
at each point as xi,j, j = 1, . . . , n (note that xi,1 is always part of the stencil).
Using the notation from Section 3, we let 0 ≤ m < n be the number of
nodes that contain both function and derivative information. The steps in the
algorithm are as follows:

(1) For each xi,1, i = 1, . . . , NI , determine its η nearest neighbors, where η
is on the order of n.

(2) Compute all possible combinations of choosing n− 1 nodes from these η
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nearest neighbors and sort them according to their average distance from
node xi,1. These nodes will be where the function values of the stencil are
given.

(3) For each set of nodes from the previous step, compute all possible combi-
nations of choosingm nodes and again sort them by their average distance
from xi,1. These nodes will be where the derivative values of the function
are also given.

(4) Looping first over the sorted set of nodes from step 2 followed by the
sorted set from step 3, compute the RBF-FD or RBF-HFD formula. When
the direct computation becomes unstable for small ε, use the Contour-
Padé algorithm [33]. Terminate the nested loops when the weights satisfy
(35) and (37).

We make a few comments regarding this algorithm:

• If an acceptable stencil can not be found, one could choose to increase
or decrease n or m. Based on the numerical results from Section 4.3, we
recommend trying to keep n+m constant for all the stencils. Additionally,
in many cases, the points in the discretization can be chosen freely. Thus, it
may also be possible to move or add some nodes until an acceptable stencil
is found.

• In cases where the number of points N in the discretization is large, an
efficient search algorithm will be required for determining the points close
to each xi,1; the binning algorithm described by Liu [35, Chap. 15] may be
appropriate for this.

• Determining the stencil from the η closest points may not result in the best
stencil choice, especially if there are large discrepancies in the discretization
points. A possible improvement may be to compute a local Delaunay trian-
gulation about the points surrounding xi,1 to determine the points natural
neighbors. This idea is also mentioned in [10].

• If the above algorithm was applied to the equispaced example from the
previous section, then it would immediately select the standard stencils (34)
as acceptable. In fact, this default behavior is what guided the algorithms
development.

Using the above algorithm, we computed RBF-FD formulas with n = 9 nodes
for all the interior points of Figure 3 (a) and for several different values of ε.
Similarly we computed two sets of RBF-HFD formulas; one with n = 9, m = 5
and the other with n = 10, m = 9. In all cases, acceptable stencils were found
after very few iterations of the stencil selection algorithm. Figure 4 displays
the max norm error in the solution to (36) with these formulas as a function
of ε. A point on any of the curves corresponds to the error in the solution
using the same value of ε in all the stencils. The figure clearly shows that the
accuracy is vastly improved by using the compact stencils. Furthermore, as
we expect, the accuracy can further be improved by increasing the size of the
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Fig. 4. Max norm error, as a function of ε, for the RBF-FD and HFD solutions of
(36). The dashed lines correspond to the error in the standard FD2 and compact
FD4 solutions of (36) using the polar mesh in Figure 3 (b).

compact stencil. However, for this example, any improvements appear to be
lost for ε approximately > 0.55. The figure also illustrates that the optimal
value of ε (the ε where the error reaches a minimum) is small (in magnitude),
and nonzero, as is often the case for the RBF interpolation problem [33]. From
the numerical results for limiting (ε → 0) scattered node formulas in Table 2
we expect that the n = 9 node RBF-FD solution would be first order accurate,
the n = 9, m = 5 node RBF-HFD solution would be second order accurate,
and the n = 10,m = 9 node RBF-HFD solution would be third order accurate.

One very important observation we make from this example is that no RBF-
FD formula satisfying the diagonal dominance property (35) could be found
for n ≥ 10 and m = 0 using the stencil selection algorithm above. However, if
we choose 2 ≤ m ≤ 9, such stencils could be found.

We next compare the RBF solutions to the standard FD solutions based on
a uniform polar mesh. For the comparison, we require that the methods con-
tain approximately the same number of boundary and interior nodes. The
unstructured discretization in Figure 3 (a) contains 56 boundary and 144 in-
terior nodes, while the numbers for the structured polar mesh in (b) are 50
and 151, respectively. We compare the results to the standard, five-node, sec-
ond order FD scheme (FD2) and the standard, compact, nine-node, fourth
order FD scheme (compact FD4) (see, for example, [36]). These solutions are
included in Figure 4 as dashed lines. Comparing the FD2 and standard n = 9
RBF-FD solution, we see that for approximately ε < 0.6, the RBF solution is
the clear winner. In fact, at the optimal value of ε, the RBF solution is over
one order of magnitude more accurate. Comparing the compact FD4 solution,
which uses nine function values and four derivative values, and the n = 9,
m = 5 RBF-HFD solution, we see that the RBF solution is better for all
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Fig. 5. (a)–(c) Convergence results of the SOR method for solving the linear systems
associated with the Poisson model problem as a function of the shape parameter
ε and SOR parameter ω. (d) Minimum number of iterations required for different
values of ε.

values of ε approximately < 1.45. Again, at the optimal ε, the RBF solution
is over one order of magnitude more accurate. Furthermore, the RBF-FD and
HFD techniques generalize to more complex domains, while the standard FD2
and compact FD4 methods used here are specific to a disk.

We finally make comments on computing the RBF-FD and HFD solutions.
The approximate RBF-FD or HFD solution u∗ to (36) at the interior points
of Ω can be expressed in terms of the linear system

Lcu∗ = (I − Lc̃)f + b, (38)

where Lc is the matrix containing the RBF-FD or RBF-HFD weights for u, Lc̃

is the matrix containing the RBF-HFD weights for ∆u (or zeros in the case of
the RBF-FD formulas), and b contains the contributions from the boundary.
Lc is sparse, non-symmetric, and since both the RBF-FD and HFD formulas
are required to satisfy (35), it is also diagonally dominant. Many iterative
techniques can be used for solving this system [37, p. 321], we have chosen the
the classical successive over-relaxation (SOR) method. In Figure 5 (a)–(c) we
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display how the number of iterations necessary for convergence of SOR depend
on ε and the relaxation parameter ω for the different RBF-FD methods. The
iterations were terminated when the solution at the ith iteration, u∗

i , satisfied

‖Lcu∗

i −((I−Lc̃)f +b)‖∞ ≤ 10−9
(
‖Lc‖∞‖u∗

i ‖∞ + ‖(I − Lc̃)f + b‖∞
)
. (39)

We can see from the figure that the optimal relaxation parameter depends
quite significantly on the value of ε for the n = 9 RBF-FD solution. However,
for both compact solutions, the optimal ω appears to be rather stable with
respect to ε. The choice of ω ≈ 1.6 seems to be good for both compact meth-
ods. Figure 5 (d) shows the number of iterations necessary for convergence at
the optimal value of ω for different values of ε. We can see from the figure
that the minimum number of iterations is quite consistent for the compact
methods but jumps around for the non-compact method. There also appears
to be a slight increase in the number of iterations as ε increases. Efficient di-
rect solvers based on the FFT may be used for the standard FD2 and compact
FD4 polar methods [38] (but only in the specialized case a circular domain).
If we had, however, used SOR then the minimum number of iterations would
be 162 for FD2 and 328 for compact FD4, which are significantly higher than
the standard RBF-FD and HFD methods.

5.3 Nonlinear equation: hybrid discretization

As a final example, we consider the nonlinear equation

∆u= e−2xu3 in Ω =
{
(x, y) | x2 + y2 ≥ 0.4 & − 1 ≤ x, y ≤ 1

}
, (40)

u= g on ∂Ω ,

where g is computed from the known solution

u(x) = u(x, y) = ex tanh
y√
2
.

Note that Ω is square with a circular whole in the middle. To discretize this do-
main, we use a hybrid approach that combines an unstructured discretization
near the hole with an equispaced discretization away from it. Figure 6 illus-
trates this discretization. We anticipate that this type of hybrid approach—
using scattered nodes only where the geometry is more complex—will be a
powerful application of the RBF-FD and HFD methods.

For each node on, and interior to the square enclosed with solid lines in Figure
6, we use scattered node RBF-HFD formulas with n = 10 and m = 9 to
approximate the Laplacian. The scattered node stencils are chosen according
to the stencil selection algorithm of the previous section. For all the other
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Fig. 6. Hybrid discretization for the problem in Section 5.3

interior nodes, we use the same n = 9, m = 4, RBF-HFD formula based on
the second stencil in (34). The scattered node stencils total 252, while the
regular stencils total 482.

Let xi = (xi, yi), i = 1, . . . , NI denote all of the interior nodes of the discretiza-
tion. Then, using the same notation as (38), we can write the approximation
of (40) as

Lcu∗ = D(I − Lc̃)(u∗)3 + b,

where D is a diagonal matrix with entries Dii = e−2xi, i = 1, . . . , NI and
b incorporates the boundary conditions. To solve this nonlinear system of
equations we use Newton-SOR [39, Sec.7.4]. Figure 7 displays the max norm
error in the approximate solution as a function of ε. Similar to the previous
example, each point on the curve corresponds to the error using the same
value of ε in all the RBF-HFD stencils. We can see from the figure that the
error decreases with ε until ε = 0.15, where it reaches a minimum value of
1.99 · 10−8.

For the Newton-SOR method, the SOR relaxation parameter was fixed at
ω = 1.635 for all the Newton iterations and for all values of ε. With this
value, the number of SOR sub-iterations required for solving the Jacobian
system in any one of the Newton iterations varied between 63 and 72. The
same stopping criterion as (39) was used for the SOR iterations, but with a
tolerance of 10−10. Finally, we used an initial guess of u = 1 for Newton’s
method. With this value, five Newton iterations were required for the residual
to reach a tolerance < 10−12 for all values of ε.

Remark 4 In our experiments, we fixed ε in all of the RBF-FD and HFD
formulas and then computed a solution. This may not, however, be the best
strategy. If, for example, the scales associated with each of the RBF-FD or
RBF-HFD stencils is significantly different, we may wish normalize ε for each
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of (40) using the hybrid discretization shown in Figure 6.

stencil. Two ideas for such a normalization are discussed by Shu et al. [7] and
Cecil et al. [10].

6 Conclusions

In a similar style to how polynomials are used to generate FD and compact
FD stencils for 1-D, we have here shown how RBFs can be used to create anal-
ogous formulas also for multidimensional scattered node layouts. We have also
demonstrated that, when the stencil nodes are arranged accordingly, RBF-FD
and HFD formulas in the ε → 0 limit are equivalent to standard FD and com-
pact FD formulas. In contrast to many methods, such as finite elements, the
RBF-FD or HFD methods do not require the generation of global meshes. Fur-
thermore, the number of space dimensions and the geometric complexity of the
methods can all be arbitrary without adversely affecting either computational
speed or algorithmic complexity. Tests with elliptic equations show that accu-
racy can be improved dramatically by using RBF-HFD formulas, and that it
is imperative to use these formulas to preserve diagonal dominance. The latter
property permits the use of fast iterative methods for computing the numerical
solution. We believe—but it is yet to be fully explored—that the RBF-HFD
approach will prove successful also for many further classes of PDEs.
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