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Abstract. Algorithms and underlying mathematics are presented for numerical computation
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cluding the solution of linear and nonlinear periodic ordinary differential equations. Differences from
the nonperiodic Chebyshev case are highlighted.
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1. Introduction. It is well known that trigonometric representations of peri-
odic functions and Chebyshev polynomial representations of nonperiodic functions
are closely related. Table 1 lists some of the parallels between these two situations.
Chebfun, a software system for computing with functions and solving ordinary dif-
ferential equations [4, 12, 27], relied entirely on Chebyshev representations in its first
decade. This paper describes its extension to periodic problems initiated by the first
author and released with Chebfun Version 5.1 in December 2014.

Table 1.1

Some parallels between trigonometric and Chebyshev settings. The row of contributors’ names
is just a sample of some key figures.

Trigonometric Chebyshev

t ∈ [0, 2π] x ∈ [−1, 1]
periodic nonperiodic
exp(ikt) Tk(x)

trigonometric polynomials algebraic polynomials
equispaced points Chebyshev points
trapezoidal rule Clenshaw–Curtis quadrature

companion matrix colleague matrix
Horner’s rule Clenshaw recurrence

Fast Fourier Transform Fast Cosine Transform
Gauss, Fourier, Zygmund, . . . Bernstein, Lanczos, Clenshaw, . . .

Though Chebfun is a software product, the main focus of this paper is mathemat-
ics and algorithms rather than software per se. What makes this subject interesting
is that the trigonometric/Chebyshev parallel, though close, is not an identity. The
experience of building a software system based first on one kind of representation and
then extending it to the other has given the Chebfun team a uniquely intimate view
of the details of these relationships. We begin this paper by listing ten differences be-
tween Chebyshev and trigonometric formulations that we have found important. This
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will set the stage for presentations of the problems of trigonometric series, polynomi-
als, and projections (Section 2), trigonometric interpolants, aliasing, and barycentric
formulas (Section 3), approximation theory and quadrature (Section 4), and various
aspects of our algorithms (Sections 5–7).

1. One basis or two. For working with polynomials on [−1, 1], the only basis
functions one needs are the Chebyshev polynomials Tk(x). For trigonometric poly-
nomials on [0, 2π], on the other hand, there are two equally good equivalent choices:
complex exponentials exp(ikt), or sines and cosines sin(kt) and cos(kt). The former is
mathematically simpler; the latter is mathematically more elementary and provides a
framework for dealing with even and odd symmetries. A fully useful software system
for periodic functions needs to offer both kinds of representation.

2. Complex coefficients. In the exp(ikt) representation, the expansion coeffi-
cients of a real periodic function are complex. Mathematically, they satisfy certain
symmetries, and a software system needs to enforce these symmetries to avoid imag-
inary rounding errors. Polynomial approximations of real nonperiodic functions, by
contrast, do not lead to complex coefficients.

3. Even and odd numbers of parameters. A polynomial of degree n is determined
by n+1 parameters, a number that may be odd or even. A trigonometric polynomial of
degree n, by contrast, is determined by 2n+1 parameters, always an odd number, as a
consequence of the exp(±inx) symmetry. For most purposes it is unnatural to speak of
trigonometric polynomials with an even number of degrees of freedom. Even numbers
make sense, on the other hand, in the special case of trigonometric polynomials defined
by interpolation at equispaced points, if one imposes the symmetry condition that the
interpolant of the (−1)j sawtooth should be real, i.e., a cosine rather than a complex
exponential. Here distinct formulas are needed for the even and odd cases.

4. The effect of differentiation. Differentiation lowers the degree of an algebraic
polynomial, but it does not lower the degree of a trigonometric polynomial; indeed it
enhances the weight of its highest-degree components.

5. Uniform resolution across the interval. Trigonometric representations have
uniform properties across the interval of approximation, but polynomials are nonuni-
form, with much greater resolution power near the ends of [−1, 1] than near the
middle [28, chap. 22].

6. Periodicity and translation-invariance. The periodicity of trigonometric repre-
sentations means that a periodic chebfun constructed on [0, 2π], say, can be perfectly
well evaluated at 10π or 100π; nonperiodic chebfuns have no such global validity.
Thus, whereas interpolation and extrapolation are utterly different for polynomials,
they are not so different in the trigonometric case. A subtler consequence of transla-
tion invariance is explained in the footnote on p. 8.

7. Operations that break periodicity. A function that is smooth and periodic may
lose these properties when restricted to a subinterval or subjected to operations like
rounding or absolute value. This elementary fact has the consequence that a number
of operations on periodic chebfuns require their conversion to nonperiodic form.

8. Good and bad bases. The functions exp(ikt) or sin(kt) and cos(kt) are well-
behaved by any measure, and nobody would normally think of using any other basis
functions for representing trigonometric functions. For polynomials, however, many
people would reach for the basis of monomials xk before the Chebyshev polynomials
Tk(x). Unfortunately, the monomials are exponentially ill-conditioned on [−1, 1]: a
degree-n polynomial of size 1 on [−1, 1] will typically have coefficients of order 2n

when expanded in the basis 1, x, . . . , xn. Use of this basis will cause trouble in almost
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any numerical calculation unless n is very small.
9. Good and bad interpolation points. For interpolation of periodic functions, no-

body would normally think of using any interpolation points other than equispaced.
For interpolation of nonperiodic functions by polynomials, however, equispaced points
lead to exponentially ill-conditioned interpolation problems [23, 24]. The mathemati-
cally appropriate choice is not obvious until one learns it: Chebyshev points, quadrat-
ically clustered near ±1.

10. Familiarity. All the world knows and trusts Fourier analysis. By contrast,
experience with Chebyshev polynomials is often the domain of experts, and it is not as
widely appreciated that numerical computations based on polynomials can be trusted.
Historically, points 8 and 9 of this list have led to this mistrust.

The book Approximation Theory and Approximation Practice [28] summarizes the
mathematics and algorithms of Chebyshev technology for nonperiodic functions. The
present paper was written with the goal in mind of compiling analogous information
in the trigonometric case. In particular, Section 2 corresponds to Chapter 3 of [28],
Section 3 to Chapters 2, 4, and 5, and Section 4 to Chapters 6, 7, 8, 10, and 19.

2. Trigonometric series, polynomials, and projections. Throughout this
paper, we assume f is a Lipschitz continuous periodic function on [0, 2π]. Here and in
all our statements about periodic functions, the interval [0, 2π] should be understood
periodically: t = 0 and t = 2π are identified, and any smoothness assumptions apply
across this point in the same way as for t ∈ (0, 2π) [18, chap. 1].

It is known that f has a unique trigonometric series, absolutely and uniformly
convergent, of the form

f(t) =

∞
∑

k=−∞

cke
ikt,(2.1)

with Fourier coefficients

ck =
1

2π

∫ 2π

0

f(t)e−iktdt.(2.2)

(All coefficients in our discussions are in general complex, though in cases of certain
symmetries they will be purely real or imaginary.) Equivalently, we have

f(t) =

∞
∑

k=0

ak cos(kt) +

∞
∑

k=1

bk sin(kt),(2.3)

with a0 = c0 and

ak =
1

π

∫ 2π

0

f(t) cos(kt)dt, bk =
1

π

∫ 2π

0

f(t) sin(kt)dt (k ≥ 1).(2.4)

The formulas (2.4) can be derived by matching the eikt and e−ikt terms of (2.3) with
those of (2.1), which yields the identities

ck =
ak
2

+
bk
2i

, c−k =
ak
2

−
bk
2i

(k ≥ 1),(2.5)

or equivalently,

ak = ck + c−k, bk = i(ck − c−k) (k ≥ 1).(2.6)
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Note that if f is real, then (2.4) implies that ak and bk are real. The coefficients ck
are generally complex, and (2.5) implies that they satisfy c−k = ck.

The degree n trigonometric projection of f is the function

fn(t) =

n
∑

k=−n

cke
ikt,(2.7)

or equivalently

fn(t) =

n
∑

k=0

ak cos(kt) +

n
∑

k=1

bk sin(kt).(2.8)

More generally, we say that a function of the form (2.7)–(2.8) is a trigonometric poly-

nomial of degree n, and we let Pn denote the (2n+1)-dimensional vector space of all
such polynomials. The trigonometric projection fn is the least-squares approximant
to f in Pn, i.e., the unique best approximation to f in the L2 norm over [0, 2π].

3. Trigonometric interpolants, aliasing, and barycentric formulas. Math-
ematically, the simplest degree n trigonometric approximation of a periodic function f
is its trigonometric projection (2.7)–(2.8). This approximation depends on the values
of f(t) for all t ∈ [0, 2π] via (2.2) or (2.4). Computationally, a simpler approximation
of f is its degree n trigonometric interpolant, which only depends on the values at
certain interpolation points. In our basic configuration, we wish to interpolate f in
equispaced points by a function pn ∈ Pn. Since the dimension of Pn is 2n+ 1, there
should be 2n+ 1 interpolation points. We take these trigonometric points to be

tk =
2πk

N
, 0 ≤ k ≤ N − 1(3.1)

with N = 2n+ 1. The trigonometric interpolation problem goes back at least to the
young Gauss’s calculations of the orbit of the asteroid Ceres in 1801 [15].

It is known that there exists a unique interpolant pn ∈ Pn to any set of data
values fk = f(tk). Let us write pn in the form

pn(t) =
n
∑

k=−n

c̃ke
ikt,(3.2)

or equivalently

pn(t) =

n
∑

k=0

ãk cos(kt) +

n
∑

k=1

b̃k sin(kt),(3.3)

for some coefficients c̃−n, . . . , c̃n or equivalently ã0, . . . , ãn and b̃1, . . . , b̃n. The coeffi-
cients c̃k and ck are related by

c̃k =

∞
∑

j=−∞

ck+jN (|k| ≤ n)(3.4)

(the Poisson summation formula), and similarly ãk/b̃k and ak/bk are related by ã0 =
∑∞

j=0 ajN and

ãk = ak +

∞
∑

j=1

(ak+jN + a−k+jN ), b̃k = bk +

∞
∑

j=1

(bk+jN − b−k+jN )(3.5)
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for 1 ≤ k ≤ n. We can derive these formulas by considering the phenomenon of alias-
ing. For all j, the functions exp(i[k+ jN ]t) take the same values at the trigonometric
points (3.1). This implies that f and the trigonometric polynomial (3.2) with coeffi-
cients defined by (3.4) take the same values at these points. In other words, (3.2) is
the degree n trigonometric interpolant to f . A similar argument justifies (3.3)–(3.5).

Another interpretation of the coefficients c̃k, ãk, b̃k is that they are equal to the
approximations to ck, ak, bk one gets if the integrals (2.2) and (2.4) are approximated
by the periodic trapezoidal quadrature rule with N points [29]:

c̃k =
1

N

N−1
∑

j=0

fje
−iktj ,(3.6)

ãk =
2

N

N−1
∑

j=0

fj cos(ktj), b̃k =
2

N

N−1
∑

j=0

fj sin(ktj) (k ≥ 1).(3.7)

To prove this, we note that the trapezoidal rule computes the same Fourier coefficients
for f as for pn, since they take the same values at the grid points; but these must be
equal to the true Fourier coefficients of pn, since the N = (2n+ 1)-point trapezoidal
rule is exactly correct for e−2int, . . . , e2int, hence for any trigonometric polynomial of
degree 2n, hence in particular for any trigonometric polynomial of degree n times an
exponential exp(−ikt) with |k| ≤ n. From (3.6)–(3.7) it is evident that the discrete
Fourier coefficients c̃k, ãk, b̃k can be computed by the Fast Fourier Transform (FFT),
which, in fact, Gauss invented for this purpose.

Suppose one wishes to evaluate the interpolant pn(t) at certain points t. One
good algorithm is to compute the discrete Fourier coefficients and then apply them.
Alternatively, another good approach is to perform interpolation directly by means
of the barycentric formula for trigonometric interpolation, introduced by Salzer [26]
and later simplified by Henrici [16]:

pn(t) =

N−1
∑

k=0

(−1)kfk csc(
t− tk
2

)

/

N−1
∑

k=0

(−1)k csc(
t− tk
2

) (N odd).(3.8)

(If t happens to be exactly equal to a grid point tk, one takes pn(t) = fk.) The work
involved in this formula is just O(N) operations per evaluation, and stability has
been established (after a small modification) in [3]. In practice, we find the Fourier
coefficients and barycentric formula methods equally effective.

In the above discussion, we have assumed that the number of interpolation points,
N , is odd. However, trigonometric interpolation, unlike trigonometric projection,
makes sense for an even number of degrees of freedom too (see e.g. [14, 19, 30]); it
would be surprising if FFT codes refused to accept input vectors of even lengths!
Suppose n ≥ 1 is given and we wish to interpolate f in N = 2n trigonometric points
(3.1) rather than N = 2n+1. This is one data value less than usual for a trigonometric
polynomial of this degree, and we can lower the number of degrees of freedom in (3.2)
by imposing the condition

c̃−n = c̃n(3.9)

or equivalently in (3.3) by imposing the condition

b̃n = 0.(3.10)



6 WRIGHT, JAVED, MONTANELLI AND TREFETHEN

This amounts to prescribing that the trigonometric interpolant through sawtoothed
data of the form fk = (−1)k should be cos(nt) rather than some other function such
as exp(int)—the only choice that ensures that real data will lead to a real interpolant.
An equivalent prescription is that an arbitrary number N of data values, even or odd,
will be interpolated by a linear combination of the first N terms of the sequence

1, cos(t), sin(t), cos(2t), sin(2t), cos(3t), . . . .(3.11)

In this case of trigonometric interpolation with N even, the formulas (3.1)–(3.7)
still hold, except that (3.4) and (3.6) must be multiplied by 1/2 for k = ±n. FFT
codes, however, do not store the information that way. Instead, following (3.9), they
compute ã−n by (3.6) with 2/N instead of 1/N out front—thus effectively storing
c̃−n+ c̃n in the place of c̃−n—and then apply (3.2) with the k = n term omitted. This
gives the right result for values of t on the grid, but not at points in-between.

Note that the conditions (3.9)–(3.11) are very much tied to the use of the sample
points (3.1). If the grid were translated uniformly, then different relationships between
cn and c−n or an/bn and a−n/b−n would be appropriate in (3.9)–(3.10) and different
basis functions in (3.11), and if the grid were not uniform, then it would be hard to
justify any particular choices at all for even N . For these reasons, even numbers of
degrees of freedom make sense in equispaced interpolation but not in other trigono-
metric approximation contexts, in general. Henrici [16] provides a modification of the
barycentric formula (3.8) for the equispaced case N = 2n.

4. Approximation theory and quadrature. The basic question of approxi-
mation theory is, will approximants to a function f converge as the degree is increased,
and how fast? The formulas of the last two sections enable us to derive theorems ad-
dressing this question for trigonometric projection and interpolation. (For finer points
of trigonometric approximation theory, see [21].) The smoother f is, the faster its
Fourier coefficients decrease, and the faster the convergence of the approximants. (If
f were merely continuous rather than Lipschitz continuous, then the trigonometric
version of the Weierstrass approximation theorem [18, Section I.2] would ensure that
it could be approximated arbitrarily closely by trigonometric polynomials, but not
necessarily by projection or interpolation.)

Our first theorem asserts that Fourier coefficients decay algebraically if f has a
finite number of derivatives, and geometrically if f is analytic. Here and in Theo-
rem 4.2 below, we make use of the notion of the total variation, V , of a periodic
function ϕ defined on [0, 2π], which is defined in the usual way as the supremum of all
sums

∑n

i=1 |ϕ(xi) − ϕ(xi−1)|, where {xi} are ordered points in [0, 2π] with x0 = xn;
V is equal to the the 1-norm of f ′, interpreted if necessary as a Riemann–Stieltjes
integral [18, Section I.4]. Thus | sin(t)| on [0, 2π], for example, corresponds to ν = 1,
and | sin(t)|3 to ν = 3. All our theorems continue to assume that f is 2π-periodic.

Theorem 4.1. If f is ν ≥ 0 times differentiable and f (ν) is of bounded variation

V on [0, 2π], then

|ck| ≤
V

2π|k|ν+1
.(4.1)

If f is analytic with |f(t)| ≤ M in the open strip of half-width α around the real axis

in the complex t-plane, then

|ck| ≤ Me−α|k|.(4.2)
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Proof. The bound (4.1) can be derived by integrating (2.2) by parts ν + 1 times.
Equation (4.2) can be derived by shifting the interval of integration [0, 2π] of (2.2)
downward in the complex plane for k > 0, or upward for k < 0, by a distance
arbitrarily close to α; see [29, Section 3].

To apply Theorem 4.1 to trigonometric approximations, we note that the error in
the degree n trigonometric projection (2.7) is

f(t)− fn(t) =
∑

|k|>n

cke
ikt,(4.3)

a series that converges absolutely and uniformly by the Lipschitz continuity assump-
tion on f . Similarly, (3.4) implies that the error in trigonometric interpolation is

f(t)− pn(t) =
∑

|k|>n

ck(e
ikt − eik

′t),(4.4)

where k′ = mod(k+ n, 2n+1)−n is the index that k gets aliased to on the (2n+1)-
point grid, i.e., the integer of absolute value ≤ n congruent to k modulo 2n+1. These
formulas give us bounds on the error in trigonometric projection and interpolation.

Theorem 4.2. If f is ν ≥ 1 times differentiable and f (ν) is of bounded variation

V on [0, 2π], then its degree n trigonometric projection and interpolant satisfy

‖f − fn‖∞ ≤
V

πνnν
, ‖f − pn‖∞ ≤

2V

πνnν
.(4.5)

If f is analytic with |f(t)| ≤ M in the open strip of half-width α around the real axis

in the complex t-plane, they satisfy

‖f − fn‖∞ ≤
2Me−αn

eα − 1
, ‖f − pn‖∞ ≤

4Me−αn

eα − 1
.(4.6)

Proof. The estimates (4.5) follow by bounding the tails (4.3) and (4.4) with (4.1),
and (4.6) likewise by bounding them with (4.2).

A slight variant of this argument gives an estimate for quadrature. If I denotes
the integral of a function f over [0, 2π] and IN its approximation by the N -point
periodic trapezoidal rule, then from (2.2) and (3.6), we have I = 2πc0 and IN = 2πc̃0.
By (3.4) this implies

IN − I = 2π
∑

j 6=0

cjN ,(4.7)

which gives the following result.
Theorem 4.3. If f is ν ≥ 1 times differentiable and f (ν) is of bounded variation

V on [0, 2π], then the N -point periodic trapezoidal rule approximation to its integral

over [0, 2π] satisfies

|IN − I| ≤
4V

Nν+1
.(4.8)

If f is analytic with |f(t)| ≤ M in the open strip of half-width α around the real axis

in the complex t-plane, it satisfies

|IN − I| ≤
4πM

eαN − 1
.(4.9)
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0 π 2π

−1

0

1

Fig. 5.1. The trigfun representing f(t) = cos(t) + sin(3t)/2 on [0, 2π]. One can evaluate f
with f(t), compute its definite integral with sum(f) or its maximum with max(f), find its roots with
roots(f), and so on.

Proof. These results follow by bounding (4.7) with (4.1) and (4.2) as in the proof
of Theorem 4.2. From (4.1), the bound one gets is 2V ζ(ν + 1)/Nν+1, where ζ is the
Riemann zeta function, which we have simplified by the inequality ζ(ν+1) ≤ ζ(2) < 2
for ν ≥ 1. The estimate (4.9) originates with Davis [10]; see also [19, 29].

Finally, in a section labeled “Approximation theory” we must mention another
famous candidate for periodic function approximation: best approximation in the ∞-
norm. Here the trigonometric version of the Chebyshev alternation theorem holds,
assuming f is real. This result is illustrated below in Figure 6.5.

Theorem 4.4. Let f be real and continuous on the periodic interval [0, 2π]. For

each n ≥ 0, f has a unique best approximant p∗n ∈ Pn with respect to the norm ‖ · ‖∞,

and p∗n is characterized by the property that the error curve (f − p∗n)(t) equioscillates
on [0, 2π) between at least 2n+ 2 equal extrema ±‖f − p∗n‖∞ of alternating signs.

Proof. See [21, Section 5.2].

5. Trigfun computations. Building on the mathematics of the past three sec-
tions, Chebfun was extended in 2014 to incorporate trigonometric representations of
periodic functions alongside its traditional Chebyshev representations. (Here and in
the remainder of the paper, we assume the reader is familiar with Chebfun.) Our
convention is that a trigfun is a representation via coefficients ck as in (2.7) of a
sufficiently smooth periodic function f on an interval by a trigonometric polynomial
of adaptively determined degree, the aim always being accuracy of 15 or 16 digits
relative to the ∞-norm of the function on the interval. This follows the same pattern
as traditional Chebyshev-based chebfuns, which are representations of nonperiodic
functions by polynomials, and a trigfun is not a distinct object from a chebfun but a
particular type of chebfun. The default interval, as with ordinary chebfuns, is [−1, 1],
and other intervals are handled by the obvious linear transplantation.1

For example, here we construct and plot a trigfun for cos(t)+sin(3t)/2 on [0, 2π]:

>> f = chebfun('cos(t) + sin(3*t)/2', [0 2*pi], 'trig'), plot(f)

1Actually, one aspect of the transplantation is not obvious, an indirect consequence of the
translation-invariance of trigonometric functions. The nonperiodic function f(x) = x defined on
[−1, 1], for example, has Chebyshev coefficients a

0
= 0 and a

1
= 1, corresponding to the expansion

f(x) = 0T
0
(x) + 1T

1
(x). Any user will expect the transplanted function g(x) = x − 1 defined on

[0, 2] to have the same coefficients a
0
= 0 and a

1
= 1, corresponding to the transplanted expansion

g(x) = 0T
0
(x−1)+1T

1
(x−1), and this is what Chebfun delivers. By contrast, consider the periodic

function f(t) = cos t defined on [−π, π] and its transplant g(t) = cos(t − π) = − cos t on [0, 2π]. A
user will expect the expansion coefficients of g to be not the same as those of f , but their negatives!
This is because we expect to use the same basis functions exp(ikx) or cos(kx) and sin(kx) on any
interval of length 2π, however translated. The trigonometric part of Chebfun is designed accordingly.
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The plot appears in Figure 5.1, and the following text output is produced, with the
flag trig signalling the periodic representation.

f =

chebfun column (1 smooth piece)

interval length endpoint values trig

[ 0, 6.3] 7 1 1

We see that Chebfun has determined that this function f is of length N = 7. This
means that there are 7 degrees of freedom, i.e., f is a trigonometric polynomial of
degree n = 3, whose coefficients we can extract with c = trigcoeffs(f), or in
cosine/sine form with [a,b] = trigcoeffs(f).

Note that the Chebfun constructor does not analyze its input symbolically, but
just evaluates the function at trigonometric points (3.1), and from this information the
degree and the values of the coefficients are determined. The constructor also detects
when a function is real. A trigfun constructed in the ordinary manner is always of
odd length N , corresponding to a trigonometric polynomial of degree n = (N − 1)/2,
though it is possible to make even-length trigfuns by explicitly specifying N .

To construct a trigfun, Chebfun samples the function on grids of size 16, 32, 64, . . .
and tests the resulting discrete Fourier coefficients for convergence down to relative
machine precision. (Powers of 2 are used since these are particularly efficient for
the FFT, even though the result will ultimately be trimmed to an odd number of
points. As with non-trigonometric Chebfun, the engineering details are complicated
and under ongoing development.) When convergence is achieved, the series is chopped
at an appropriate point and the degree reduced accordingly.

Once a trigfun has been created, computations can be carried out in the usual
Chebfun fashion via overloads of familiar MATLAB commands. For example,

>> sum(f.^2)

ans = 3.926990816987241

This number is computed by integrating the trigonometric representation of f2, i.e.,
by returning the number 2πc0 corresponding to the trapezoidal rule applied to f2 as
described around Theorem 4.3. The default 2-norm is the square root of this result,

>> norm(f)

ans = 1.981663648803005

Derivatives of functions are computed by the overloaded command diff. (In the
unusual case where a trigfun has been constructed of even length, differentiation will
increase its length by 1.) The zeros of f are found with roots:

>> roots(f)

ans =

1.263651122898791

4.405243776488583

and Chebfun determines maxima and minima by first computing the derivative, then
checking all of its roots:

>> max(f)

ans = 1.389383416980387

Concerning the algorithm used for periodic rootfinding, one approach would be to
solve a companion matrix eigenvalue problem, and O(n2) algorithms for this task
have recently been developed [1]. When development of these methods settles down,
they may be incorporated in Chebfun. For the moment, trigfun rootfinding is done by
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Fig. 5.2. Absolute values of the Fourier coefficients of the trigfun for exp(sin t) on [0, 2π]. This
is an entire function (analytic throughout the complex t-plane), and in accordance with Theorem 4.1,
the coefficients decrease faster than geometrically.

first converting the problem to nonperiodic Chebfun form using the standard Cheb-
fun constructor, whereupon we take advantage of Chebfun’s O(n2) recursive interval
subdivision strategy [6]. This shifting to subintervals for rootfinding is an example of
an operation that breaks periodicity as mentioned in item 7 of the introduction.

The main purpose of the periodic part of Chebfun is to enable machine precision
computation with periodic functions that are not exactly trigonometric polynomials.
For example, exp(sin t) on [0, 2π] is represented by a trigfun of length 27, i.e., a
trigonometric polynomial of degree 13:

g = chebfun('exp(sin(t))', [0 2*pi], 'trig')

g =

chebfun column (1 smooth piece)

interval length endpoint values trig

[ 0, 6.3] 27 1 1

The coefficients can be plotted on a log scale with the command plotcoeffs(f), and
the in Figure 5.2 reveals the faster-than-geometric decay of an entire function.

Figure 5.3 shows trigfuns and coefficient plots for f(t) = tanh(5 cos(5t)) and
g(t) = exp(−1/max{0, 1 − t2/4}) on [−π, π]. The latter is C∞ but not analytic.
Figure 5.4 shows a further pair of examples that we call an “AM signal” and an “FM
signal”. These are among the preloaded functions available with cheb.gallerytrig,
Chebfun’s trigonometric analogue of the MATLAB gallery command.

Computation with trigfuns, as with nonperiodic chebfuns, is carried out by a
continuous analogue of floating point arithmetic [27]. To illustrate the “rounding”
process involved, the degrees of the trigfuns above are 555 and 509, respectively.
Mathematically, their product is of degree 1064. Numerically, however, Chebfun
achieves 16-digit accuracy with degree 556.

Here is a more complicated example of Chebfun rounding adapted from [27],
where it is computed with nonperiodic representations.

f = chebfun(@(t) sin(pi*t), 'trig')

s = f

for j = 1:15

f = (3/4)*(1 - 2*f.^4), s = s + f

end
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Fig. 5.3. Trigfuns of tanh(5 sin t) and exp(−100(t + .3)2) (upper row) and corresponding
absolute values of Fourier coefficients (lower row).
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Fig. 5.4. Trigfuns of the “AM signal” cos(50t)(1 + cos(5t)/5) and the “FM signal” cos(50t +
4 sin(5t)) (upper row) and corresponding absolute values of Fourier coefficients (lower row).
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Fig. 5.5. After fifteen steps of an iteration, this periodic function has degree 1148 in its Chebfun
representation rather than the mathematically exact figure 1,073,741,824.

This program takes 15 steps of an iteration that in principle quadruples the degree at
each step, giving a function s at the end of degree 415 = 1,073,741,824. In actuality,
however, because of the rounding to 16 digits, the degree comes out one million times
smaller as 1148. This function is plotted in Figure 5.5. Following [27], we can compute
the roots of s− 8 in half a second on a desktop machine:

>> roots(s-8)

ans =

-0.992932107411876

-0.816249934290177

-0.798886729723433

-0.201113270276572

-0.183750065709828

-0.007067892588112

0.346696120418255

0.401617073482111

0.442269489632475

0.557730510367530

0.598382926517899

0.653303879581760

The integral with sum(s) is 15.265483825826763, correct except in the last two digits.
If one tries to construct a trigfun by sampling a function that is not smoothly

periodic, Chebfun will by default go up to length 216 and then issue a warning:

>> h = chebfun('exp(t)', [0 2*pi], 'trig')

Warning: Function not resolved using 65536 pts.

Have you tried a non-trig representation?

On the other hand, computations that are known to break periodicity or smoothness
will result in the representation being automatically cast from a trigfun to a chebfun.
For example, here we define g to be the absolute value of the function f(t) = cos(t)+
sin(3t)/2 of Figure 5.1. The system detects that f has zeros, implying that g will
probably not be smooth, and accordingly constructs it not as a trigfun but as an
ordinary chebfun with several pieces:

>> f = chebfun('cos(t) + sin(3*t)/2', [0 2*pi], 'trig'), g = abs(f)

g =

chebfun column (3 smooth pieces)

interval length endpoint values

[ 0, 1.3] 17 1 3.8e-16

[ 1.3, 4.4] 25 1.8e-15 7.3e-16

[ 4.4, 6.3] 20 -6.6e-18 1

Total length = 62.
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Fig. 5.6. When the absolute value of the trigfun f of Figure 5.1 is computed, the result is a
nonperiodic chebfun with three smooth pieces.

Similarly, if you add or multiply a trigfun and a chebfun, the result is a chebfun.

6. Applications. Analysis of periodic functions and signals is one of the oldest
topics of mathematics and engineering. Here we give six examples of how a system
for automating such computations may be useful.

Complex contour integrals. Smooth periodic integrals arise ubiquitously in com-
plex analysis. For example, suppose we wish to determine the number of zeros of
f(z) = cos(z)− z in the complex unit disk. The answer is given by

m =
1

2πi

∫

f ′(z)

f(z)
dz =

1

2πi

∫

1

f(z)

df

dt
dt(6.1)

if z = exp(it) with t ∈ [0, 2π]. With periodic Chebfun, we can compute m by

>> z = chebfun('exp(1i*t)', [0 2*pi], 'trig');

>> f = cos(z) - z;

>> m = real(sum(diff(f)./f)/(2i*pi))

m = 1.000000000000000

Changing the integrand from f ′(z)/f(z) to zf ′(z)/f(z) gives the location of the zero,
correct to all digits displayed.

>> z0 = real(sum(z.*diff(f)./f)/(2i*pi))

z0 = 0.739085133215161

(The real commands are included to remove imaginary rounding errors.) For wide-
ranging extensions of calculations like these, including applications to matrix eigen-
value problems, see [2].

Linear algebra. Chebfun does not work from explicit formulas: to construct a
function, it is only necessary to be able to evaluate it. This is an extremely useful
feature for linear algebra calculations. For example, the matrix

A =
1

3







2 −2i 1 1
2i −2 0 2
−2 0 1 2
0 i 0 2






(6.2)

has all its eigenvalues in the unit disk. A question with the flavor of control and
stability theory is, what is the maximum resolvent norm ‖(zI − A)−1‖ for z on the
unit circle? We can calculate the answer with the code below, which constructs
a periodic chebfun of degree n = 569. The maximum is 27.68851, attained with
z = exp(0.454596i).
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Fig. 6.1. Resolvent norm ‖(zI − A)−1‖ for a 4× 4 matrix A with z = eit on the unit circle.

A = [2 -2i 1 1; 2i -2 0 2; -2 0 1 2; 0 1i 0 2]/3, I = eye(4)

ff = @(t) 1/min(svd(exp(1i*t)*I-A))

f = chebfun(ff, [0 2*pi], 'trig', 'vectorize')

[maxval,maxpos] = max(f)

Circular convolution and smoothing. The circular or periodic convolution of two
functions f and g with period T is defined by

(f ∗ g)(t) :=

∫ t0+T

t0

g(s)f(t− s)ds,(6.3)

where t0 is aribtrary. Circular convolutions can be computed for trigfuns with the
circconv function, whose algorithm consists of coefficientwise multiplication in Fourier
space. For example, here is a trigonometric interpolant through 201 samples of a
smooth function plus noise, shown in the upper-left panel of Figure 6.2.

N = 201, tt = trigpts(N, [-pi pi])

ff = exp(sin(tt)) + 0.05*randn(N,1)

f = chebfun(ff, [-pi pi], 'trig')

The high wave numbers can be smoothed by convolving f with a mollifier. Here we
use a Gaussian of standard deviation σ = 0.1 (numerically periodic for σ ≤ 0.35).
The result is shown in the upper-right panel of the figure.

gaussian = @(t,sigma) 1/(sigma*sqrt(2*pi))*exp(-0.5*(t/sigma).^2)

g = @(sigma) chebfun(@(t) gaussian(t,sigma), [-pi pi], 'trig')

h = circconv(f, g(0.1))

Fourier coefficients of non-smooth functions. A function f that is not smoothly
periodic will at best have a very slowly converging trigonometric series, but still, one
may be interested in its Fourier coefficients. These can be computed by applying
trigcoeffs to a chebfun representation of f and specifying how many coefficients
are required; the integrals (2.2) are then evaluated numerically by Chebfun’s standard
method of Clenshaw–Curtis quadrature. For example, Figure 6.3 shows a portrayal of
the Gibbs phenomenon from Runge’s 1904 book together with its Chebfun equivalent
computed in a few seconds with the commands

t = chebfun('t', [-pi pi]), f = (abs(t) < pi/2)

for N = 2*[1 3 5 7 21 79] + 1

c = trigcoeffs(f, N)

fN = chebfun(c, [-pi pi], 'coeffs', 'trig')

plot(fN, 'interval', [0 4*pi])

end

Interpolation in unequally spaced points. Very little attention has been given to
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Fig. 6.2. Circular convolution of a noisy function with a smooth mollifier.

Fig. 6.3. On the left, a figure from Runge’s 1904 book Theorie und Praxis der Reihen [25]. On
the right, the equivalent computed with periodic Chebfun. Among other things, this figure illustrates
that a trigfun can be accurately evaluated outside its interval of definition.

trigonometric interpolation in unequally spaced points, but the barycentric formula
(3.8) for odd N and Henrici’s generalization for even N have been generalized to this
case by Salzer and Berrut [5]. Chebfun makes these formulas available through the
command chebfun.interp1, just as has long been true for interpolation by algebraic
polynomials. For example, the code

t = [-3 -2 -1 0 .5 1 1.5 2 2.5]

p = chebfun.interp1(t, abs(t), 'trig', [-pi pi])

interpolates the function |t| on [−π, π] in the 9 points indicated by a trigonometric
polynomial of degree n = 4. The interpolant is shown in Figure 6.4 together with the
analogous curve for equispaced points.

Best approximation, CF approximation, and rational functions. Chebfun has long
had a dual role: it is a tool for computing with functions, and also a tool for exploring
principles of approximation theory, including advanced ones. The trigonometric side
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Fig. 6.4. Trigonometric interpolation of |t| in unequally spaced points with the generalized
barycentric formula implemented in chebfun/interp1.
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Fig. 6.5. Error curve in degree n = 10 best trigonometric approximation to f(t) = 1/(1.01 −
sin(t− 2)) over [0, 2π]. The curve equioscillates between 2n+ 2 = 22 alternating extrema.

of Chebfun extends this second aspect to periodic problems. For example, Chebfun’s
new trigremez command can compute best approximants with equioscillating error
curves as described in Theorem 4.3 [17]. Here is an example that generates the error
curve displayed in Figure 6.5, with error 12.1095909.

f = chebfun('1./(1.01-sin(t-2))', [0 2*pi], 'trig')

p = trigremez(f,10), plot(f-p)

Chebfun is also acquiring other capabilities for trigonometric polynomial and ratio-
nal approximation, including Carathéodory–Fejér (CF) near-best approximation via
singular values of Hankel matrices, and these will be described elsewhere.

7. Periodic ODEs, operator exponentials, and eigenvalue problems. A
major capability of Chebfun is the solution of linear and nonlinear ordinary differential
equations (ODEs), as well as integral equations, by applying the backslash command
to a “chebop” object. We have extended these capabilities to periodic problems, both
scalars and systems. See [13] for the theory of existence and uniqueness of solutions
to periodic ODEs, which goes back to Floquet in the 1880s, a key point being the
avoidance of nongeneric configurations corresponding to eigenmodes.

Chebfun’s algorithm for linear ODEs amounts to an automatic spectral collocation
method wrapped up so that the user need not be aware of the discretization. With
standard Chebfun, these are Chebyshev spectral methods, and now with the periodic
extension, they are Fourier spectral methods [9]. The problem is solved on grids of size
32, 64, and so on until the system judges that the Fourier coefficients have converged
down to the level of noise, and the series is then truncated at an appropriate point.

For example, consider the problem

0.001(u′′ + u′)− cos(t)u = 1, 0 ≤ t ≤ 6π(7.1)
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Fig. 7.1. Solution of the linear periodic ODE (7.1) as a trigfun of degree 168, computed by an
automatic Fourier spectral method.

with periodic boundary conditions. The following Chebfun code produces the solution
plotted in Figure 7.1 in half a second on a laptop. Note that the trigonometric
discretizations are invoked by the flag L.bc = 'periodic'.

L = chebop(0,6*pi)

L.op = @(x,u) 0.001*diff(u,2) + 0.001*diff(u) - cos(x).*u

L.bc = 'periodic'

u = L\1

This trigfun is of degree 168, and the residual reported by norm(L*u-1) is 1× 10−12.
As always, u is a chebfun; its maximum, for example, is max(u) = 66.928.

For periodic nonlinear ODEs, Chebfun applies trigonometric analogues of the
algorithms developed by Driscoll and Birkisson in the Chebshev case [7, 8]. The
whole solution is carried out by a Newton or damped Newton iteration formulated in
a continuous mode (“solve then discretize” rather than “discretize then solve”), with
Jacobian matrices replaced by Fréchet derivative operators implemented by means of
automatic differentiation and automatic spectral discretization. For example, suppose
we seek a solution of the nonlinear problem

0.004u′′ + uu′ − u = cos(2πt), t ∈ [−1, 1](7.2)

with periodic boundary conditions. After seven Newton steps, the Chebfun commands
below produce the result shown in Figure 7.2, of degree n = 362, and the residual
norm norm(N(u)-rhs,’inf’) is reported as 8× 10−9.

N = chebop(-1,1)

N.op = @(x,u) .004*diff(u,2) + u.*diff(u) - u

N.bc = 'periodic'

rhs = chebfun('cos(2*pi*t)', 'trig')

u = N\rhs

Chebfun’s overload of the MATLAB eigs command solves linear ODE eigenvalue
problems by, once again, automated spectral collocation discretizations [11]. This too
has been extended to periodic problems, with Fourier discretizations replacing Cheby-
shev. For example, a famous periodic eigenvalue problem is the Mathieu equation

−u′′ + 2q cos(2t)u = λu, t ∈ [0, 2π],(7.3)

where q is a parameter. The commands below give the plot shown in Figure 7.3.

q = 2

L = chebop(@(x,u) -diff(u,2)+2*q*cos(2*x).*u, [0 2*pi], 'periodic')

[V,D] = eigs(L,5), plot(V)
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Fig. 7.2. Solution of the nonlinear periodic ODE (7.2) computed by iterating the Fourier
spectral method within a continuous form of Newton iteration. Executing max(diff(u)) shows that
the maximum of u′ is 32.094.
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Fig. 7.3. First five eigenfunctions of the Mathieu equation (7.3) with q = 2, computed with eigs.

So far as we know, Chebfun is the only system offering such convenient solution
of ODEs and related problems, now in the periodic as well as nonperiodic case.

We have also implemented a periodic analogue of Chebfun’s expm command for
computing exponentials of linear operators, which we omit discussing here for reasons
of space. All the capabilities mentioned in this section can be explored with Chebgui,
the graphical user interface written by Birkisson, which now invokes trigonometric
spectral discretizations when periodic boundary conditions are specified.

8. Discussion. Chebfun is an open-source project written in MATLAB and
hosted on GitHub; details and the user’s guide can be found at www.chebfun.org [12].
About thirty people have contributed to its development over the years, and at present
there are about ten developers based mainly at the University of Oxford. During
2013–2014 the code was redesigned and rewritten as version 5 (first released June
2014) in the form of about 100,000 lines of code realizing about 40 classes. The aim
of this redesign was to enhance Chebfun’s modularity, clarity, and extensibility, and
the introduction of periodic capabilities, which had not been planned in advance, was
the first big test of this extensibility. We were pleased to find that the modifications
proceeded smoothly. The central new feature is a new class @trigtech in parallel to
the existing @chebtech1 and @chebtech2, which work with polynomial interpolants
in first- and second-kind Chebyshev points, respectively.

About half the classes of Chebfun are concerned with representing functions, and
the remainder are mostly concerned with ODE discretization and automatic differen-
tiation for solution of nonlinear problems, whether scalar or systems, possibly with
nontrivial block structure. The incorporation of periodic problems into this second,
more advanced part of Chebfun was achieved by introducing a new class @trigcolloc
matching @chebcolloc1 and @chebcolloc2.

About a dozen software projects in various computer languages have been modeled
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on Chebfun, and a partial list can be found at www.chebfun.org. One of these,
Fourfun, is a MATLAB system for periodic functions developed independently of the
present work by Kristyn McLeod, a student of former Chebfun developer Rodrigo
Platte [20]. Another that also has periodic and differential equations capabilities is
ApproxFun, written in Julia by Sheehan Olver and former Chebfun developer Alex
Townsend [22].2 We think the enterprise of numerical computing with functions is here
to stay, but cannot predict what systems or languages may be dominant, say, twenty
years from now. For the moment, only Chebfun offers the breadth of capabilities
entailed in the vision of MATLAB-like functionality for continuous functions and
operators in analogy to the long-familiar methods for discrete vectors and matrices.

In this article we have not discussed Chebfun computations with two-dimensional
periodic functions, which are under development. For example, we are investigating
capabilities for solution of time-dependent PDEs on a periodic spatial domain and
for PDEs in two space dimensions, one or both of which are periodic. A particularly
interesting prospect is to apply such representations to computation with functions
on disks and spheres.

For computing with vectors and matrices, although MATLAB codes are rarely
the fastest in execution, their convenience makes them nevertheless the best tool for
many applications. We believe that Chebfun, including now its extension to periodic
problems, plays the same role for numerical computing with functions.
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